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SYNOPSIS OF SHROUDED PROPELLER TEST PROGRAM

A shrouded propeller test program was conducted under contract NOw-64-0707-d award-
ed to the Hamilton Standard Division of the United Aircraft Corporation by the Bureau
of Naval Weapons in November of 1964. This program included both experimental and-
analytical phases.

The experimental phase of the program was conducted in the United Aircraft wind tunnel

test facilities on a series of shroud-propeller models. This testing included the effects
of varying the shroud parameters of lip shape, exit area ratio, propeller position,
shroud chord length, and exterior shape, and propeller parameters such as planform

distribution, number of blades, and tip clearance. Each of these parameters was tested
over a wide range of propeller power loadings, tip speeds, and free-stream Mach num-
bers. These data were then presented in a manner in which the effect of variations of
each geometric parameter on performance, pressure and velocity distributions could
be separately evaluated. The results are reported in Hamilton Standard Report. HSER
4348.

The analytical phase of the program involved the development of a shrouded propeller
aerodynamic design and performance prediction method. This method, based on a
theory which includes the interaction of shroud, propeller and centerbody induced
flows, represents the propeller by a finite number of-blades, and includes the in-
fluence of finite shroud and centerbody dimensions. The method has been comput-
erized and substantiated by comparisons of calculations with the test data from the
experimental phase. These efforts are reported in Hamilton Standard HSE., 4776.
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1.0 SUMMARY

->-This report contains and summarizes a program conductedy Hamilton standard)for
the development of an analytic shrouded propeller performance prediction method.

The Therm Advanced Research, Inc. shrouded propeller theory was used as the basis
of the method.f bue to certain limitations In this basic theory 'Hamilton Standard
included propeller geometry, shroud drag, and the effect of centerbody. Furthermore,
additional adjustments were made in an attempt to extend its applicability to lower
velocities and to shrouds with greater thickness and camber than were considered in
the basic theory. The method was computerized, and the computer program was then
used in evaluating the computational procedur by comparisons with the test data

obtained- amilton Standardin the United Aircraft)wind tunnel test facility. In
general, the method agreed well with test for Mach numbers greater than or equal to
0.20 for propeller performance and shroud surface pressure distributions. The net
thrust (shroud plus propeller) comparisios were not as favorable, due to the simplifying
assumptions in both the inviscid net thrust and shroud drag computations.( he results

show that further work is required to extend the theory to static conditions An-&to better
define net thrust.

The wind tunnel tests were undertaken as Phase I and the method development as Phase
MI of contract NOw-64-0707-d awarded by the Bureau of Naval Weapons in November
of 1964.

4
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2.0 INTRODUCTION

Existing methods, based on momentum concepts, for the design and performance
prediction of shrouded propellers are not able to account for shroud shape except in
terms of shroud area ratio and therefore cannot be used to predict shroud pressure
distributions, Also unaccounted for are the effects of propeller location, propeller
tip clearance and centerbody geometry. Information on the effects of these variables
is necessary for the design of shrouded propellers. The shroud pressure distribution
is especially needed, since it enters directly into the prediction of the boundary layer
separation characteristics of the shroud.

These shortcomings prompted Hamilton Standard to investigate treatments which
included these effects, and led to the choice of the Therm Advanced Research, Inc.
(T. A.R.) formulation as the basis for a shrouded propeller performance prediction
method which has been programmed for digital computation.

The T. A.R. theory as formulated, however, contains certain assumptions which
limit its applicability to high forward speeds and/or to thin shrouds of small camber.
In addition, it does not permit specification of the propeller geometry and does not
account for the effects of centerbody. Therefore, before it can be used as a perfor-
mance prediction tool, and as part of its continuing development, methods for the
removal of these shortcomings must be investigated and evaluated.

Mutual recognition of the need for the continued development of this method resulted
in the Phase III portion of Navy Contracted NOw-64-0707-d, granted to the Hamilton
Standard Division of the United Aircraft Corporation by Buweps. Under Phase III of
this contract, the removal of the shortcomings discussed above are Investigated. The
resulting corrections to the the theory are Incorporated into the computer program and
the method validity checked by comparisons with the test data obtained from Phase I.

JI
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3.0 OBJECTIVES

1. Develop a practical design and performance prediction method for shrouded
propellers based on the three-dimensional theory derived by Therm Advanced
Research, Inc.

2. Investigate the feasibility of extending the method to include such effects as
centerbody and shroud drag, and investigate the feasibility of extending the method
to the static case.

3. Utilize the test data from Phase I to check out the method and to provide empirical
adjustments to the basic method as may be required.

4. Develop a computer program, describe the pertinent instructions for using the
computer program, and present sample cases.

Ii

it
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4.0 CONCLUSIONS

As a result of the reported investigations the following conclusions are drawn.

THEORETICAL

1. The effects of centerbody, propeller geometry, and shroud thrust and drag were
added to the basic T. A.R. Theory.

2. Improvements to the representation of the propeller wake induced velocities,
shroud boundary conditions, and shroud leading edge pressure distributions were
incorporated.

COMPUTER PROGRAM

1. The improvements and additions to the theory have been incorporated into the
program.

2. The program is a tool useful for parametric studies of shroud and propeller
geometry variations due to ease of input manipulation and fast computing time.

3. The program is set up in a manner which readily permits additions and/or changes
to any of its major sections.

METHOD EVALUATION

1. The velocity field;* piope'ller performance, and thrust derivatives are well pre-
dicted for the range of velocities for which the theory is valid, i. e., for values
of Va/Vo - 1.35, which corresponds for air to a Mach number of approximately
* 2 or greater. Va is the average axial velocity at the propeller plane and Vo is
the free stream velocity.

2. The shroud pressure distributions were well predicted for Va/Vo < 1.35, except
in the leading edge region, where the agreement was fair. This region is 0.,eak
because of the leading edge singularity inherent in the theory and the application
of the approximate Riegels correction.

3. rlie net thrst (shroud plus propeller ) comparisons of calculation and test are only

fair for "Va/Vo _ 1. 35. This is duo to the limiting assumptions in both the inviscid
tnet thrust and shroud drag computational procedures.

,I. Ior Va/Vo 1. 35, the higher harmonics are not requir edl in the coml)utation of
the shrouid induced velocity, I)catis thicir priie inltluence on l)erlormiaiicc is duC
to the (hr'ect coltiVJtl)tiol of the propeller which is properly accounted for 1by the
Goldstein 'Thcory.

4
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5. The centerbody has an effect on performance which is properly predicted by the
theory. The changes in performance due to changes in area ratio and propeller

locations are not influenced by the detailed shape of the test centerbody, although

there is an effect on the level of performance.

6. The corrections and additions to the theory resulted in better agreement between

calculations and tests for Va/Vo < 1.35.

7. The corrections and additions to the theory did not permit extension to low forward

speed and static regimes since they were not all inclusive. In particular, the

representations of the propeller wake, shroud thickness, and centerbody thickness

were invalid for this regime.

I
I

I

II1
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5. 0 RECOMMENDATIONS

Based on the reported investigations the following recommendations may be made.

USE OF EXISTING METHOD

1. For performance calculations in the static and low speed range, Va/Vo - 1.35,
use the Patterson method of Ref. 16 and 17 until a more rigorous method,
is developed.

2. Investigate the effect on performance and pressure distribution of the first order
j correction to the shroud boundary condition for a range of camber lines which

differ from those used in this report.

METHOD IMPROVEMENT

1. Investigate methods for the improvement of the inviscid thrust calculation and
shroud drag calculation by use of a more rigorous theoretical approach coupled
with empirical corrections.

2. Improve the representation of the pressure dirtributicn in the region of the leading

edge by studying means for eliminating the singularity.

3. Investigate the use of the shroud surface instead of the shroud reference cylinder
for the calculation of shroud surface pressure distribution.

EXTENSION TO STATIC

1. Develop the method for use in the static and low forward flight speed regime,
using the T.A.R. static model of Ref. 18 as a starting point, and adding
the effects of thickness, non-zero camber, variable propeller circulation, and

a representation of the propeller wake incorporating self-induced distortion.

6
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6.0 DISCUSSION OF METHOD AND COMPUTER PROGRAM

6.1 MATHEMATICAL MODEL

6. 1. 1 Introduction

The treatment of the incompressible flow field of shrouded propellers developed by
Therm Advanced Research (T. A. R.) is the basis of the performance prediction method

r used throughout this study. A detailed description of their work is contained in Ref.
I and 2. A brief description of the model is given so that the changes and additions
incorporated during this contract will be easier to describe and understand. A pro-
peller fixed coordinate system is used, and the shroud orientation in this system is
shown in Fig. 1.

U The theory as developed is a true three-dimensional theory. Its formulation is based
Ion a lifting line representation of the blades of the propeller. As a result, azimuthal

as well as radial and axial variations in flow properties are described. The mathe-
matical complexities associated with such a model are, as may be expected, formid-
able. In addition, the prime performance parameters, such as shroud thrust, pro-
peller thrust, and absorbed horsepower may be adequately represented by consider-
ing azimuthal ly averaged properties.

The azimuthal variations in the T.A.R. model are represented by expansion in a

Fourier series over the angular variable, 0 , which is defined in Fig. 1. It In
shown in Ref. 1 that the equations defining the coefficients for each harmonic de-
couple, permitting separate evaluation. It is further shown that the solution for
the zeroth harmonic, or azimuthal average, is exactly equivalent to a solution in
which the propeller is represented by a non-uniformly loaded actuator disk.

The mathematical solution is much simpler for the zeroth harmonic than for the higher
harmonics, and since, as noted above, azimuthally averaged properties (I. e., zeroth
harmonic) may adequately define the performance parameters, only the zeroth har-

monic has been incorporated into the method. Evaluation during the course of this
program will then indicate whether the added complexity of incorporating the higher
harmonics is necessary.

In the following, a brier description o1" the zeroih harmonic formulation and solution
is given. lor simplici 'y the zeroth harmonic is formulated by consideIring the
a(utator disk representation of the propeller directly, as ol)ppacd to the equivalent,
but more complex, method of considering the zeroth harmonic of the finite bladed
representation. Due to the exact equivalence of the two methods, the resulting
equations are identical. The words zeroth harmonic and actuator disk will be
used interchangeably, shice the two are exactly equivalent.

7
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6.1.2 Formulation of Mathematical Solution for Zeroth Harmonic

In the limit of the actuator disk representation of the propeller, there is no variation
of flow properties with the angle 0 , so that all singularities used to represent the
shroud, propeller, and wake system mast have axisymmetric flow fields. Thus, the
shroud camber line is represented by a distribution of vortex rings along the shroud
reference cylinder. The shroud thickness form is represented by a distribution of
source and sink rings along the reference cylinder. In the actuator disk limit the
shroud sheds no wake, since there can be no azimuthal variation of vorticity along the
shroud reference cylinder. The centerbody is represented by a line of three-dimen-
sional sources and sinks distributed along the cylinder center line. The propeller in
the limit of the zeroth harmonic is represented by an infinite number of bound blade
vortices, oriented radially, whose strength varies radially in accordance with the
propeller circulation distribution. This radial variation of propeller circulation gives
rise to a propeller wake which is made up of an infinite number of helical filaments,

i set at the pitch corresponding to the ratio of free stream velocity to propeller tip
speed.

Having described the mathematical singularities used to represent the various elements
of the shrouded propeller, it is now necessary to specify their strengths. The source-
sink distributions are obtained directly from the thickness forms, which for the shroud
are defined relative to the shroud cambe- line. The shroud camber line is defined
such that a norrial at any point on the camber line, drawn from the upper surface to
the lower surface, is bisected by the camber line. In this manner, tho resulting
thickness form is symmetrical. For reasons of mathematical tractability, the T. A.R.
theory has been linearized by the assumption that the axial velocities induced by the
various singularities are small compared to the free stream velocity. Consistent with

If this assumption, it is possible to show that the shroud source-sink distribution is pro-
portional to the derivative of the thickness form with respect to chord, (See Bef. 3).
The velocity field at any point can then be obtained by integration over the source-sink
distribution.

The original T. A. R. theory did not include the effects of centerbody, which for practi-
cal shrouded propeller geometries could be significant. Therefore, Hamilton Standard,
in conjunction with T A.R., has Incorporated coriterbody effects into the theory and
program. The details of the Hamilton Standard derivation are discussed in Appendix
11. 1, and a brief description Is given below. The centerbody is represented by a dis-
tribution of three-dimensional sources and sinks along the shroud centerline. Again,
consistent with the linearization assumptions, application of continuity shows that the
strength of this distribution is proportional to the derivative of the centerbody thickness
form squared. Once the thickness form is specified, the velocity at any-point In the
flow field can be obtained by integration over the centerbody source-sink distribution.

The mathematical solution formulated by T.A.R. is such that the propeller radial
circulation distribution is pre-specified, making it possible to use the theory to design
a propeller geometry for the given distribution, but not to predict the distribution of

~9
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6. L. 2 (Continued)

a given propeller geometry. This shortcoming was circumvented by use of an itera-
tive procedure, described in paragraph 6. 2.4. Once the propeller circulation distribu-
tion is specified, the circulation of the wake elements is also completely defined and
the flow field due to the propeller and its wake can be obtained by use of the Biot-
Savart law.

The only singularitk distribution remaining to be specified is the vorticity distribution
representing the shroud camber line. This distribution must be such that the boundary
condition of no flow through the shroud wall be satisfied. Again, assuming that the
induced axial velocity is small compared to Vo and that the slope of the camber line
is small, this boundary condition becomes (See paragraph 6.2. 5e for derivation):

V11 (X)E(x) - (1)
Vo

where E(X) slope of the shroud camber line,

Vr (X radial velocity along the mean camber line.

The radial velocity, VrX), consists of contributions due to the propeller and its wake,
the centerbody, the shroud thickness form, all of which are known within the synthesis
of the T.A.R. analysis, and the unknown contribution due to the shroud vorticity. In

terms of these velocities, the boundary condition Eq. (1) becomes

) X Vr N /  Vr (X) V r (X)

V° Shroud P 0)Shroud 0 P 0_

Vorticity Thickness Wake

where everything on the right hand side is known, but where the left hand side is known
only in terms o1r he unknown shroud vorticity distribution. The relationship between
Vr(X)/Vo and the shroud vorticity distribution, Y (X), Is given by application of the

Blot-Savart law to the ring vortices representing the shroud camber line, and results in

a double integral over the shroud surface. A-priori integration over the azimuthal vari-

able 0 is permitted, sincey(X) depends only on axial distance and not 0 . This Integra-

tion is expressible in terms of Legendre functions and reduces the double integral to the

following single integral.
k 2

Vr (Xs) Y (Xv) Axv / 2
- Vo - - (3)

'Shroud -2
Vorti city

10
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where Q1/2 = derivative of I,egendre function

Xv =Xv/R

Xv  = position of shroud vortex ring

R = shroud reference cylinder radius

AXV = Xs - Xv

Xs  = Xs/R

Xs  = field point on shroud at which radial velocity is computed

C = shroud chord

X = shroud chord/diameter ratio - C/2R

Substitution of Eq. (3) into Eq. _2) results in an integral equation for the unknown
shroud vorticity distribution Y(Xv), i.e.,if fx _ v,-x-r -- ,,.

Y(xv) AXv Q A v d-V()\ V1r() V=(Xs)

Vo 27r 1/2 + v o  Vo V )1
0 

Shroud Prop Center-

Thickness Wake body

It should be noted that clue to symmetry considerations, the propeller bound vorticity,
as represented by the actuator disk, does not induce a radial velocity at the shroud
camber line, although the propeller wake does.

The T. A. R. mathematical solution of Eq. (4) for the zeroth harmonic is discussed in
detail in Ref. 1 and 2. A brief description of the solution is given below. The
evaluation of - )  in terms of propeller circulation is discussed in

prop wake

Appendix 11.7. Eq. (4) is solved by transformation to the Glauert variable 9 , defined
by X = -X cos ¢ and expansion of y (Xv) into the following Glauert series

Y(Ov) bo bo 1
(¢v)_boo cot bv +  sin,~

o 2 v 2

where the summation on v is carried out until the desired accuracy is obtained.
Substitution of this expansion into Eq. (4), transformation of the variable of integra-
tion from Xv to the Glauert variable (Pv results in an integral equation in terms of
the unknown constants bo •

-- --------
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6.1.2 (Continued)

The solution of this equation for the boy's is based on an iteration procedure in which
initial values for the bo-'s are obtained by using a representation of the shroud vorti-
city distribution which neglects the curvature of the rings. This representation re-
duces the problem to that of classicq1 in airfoil theory. The initial values of the
bo Is thus obtained are designated bov . The solution for the three-dimensional bov's

;. is complex and described fully In Ref. 2, along with the i2~dmensional solution.

The resulting expressions for the bo Is in terms of the bo" can'be expressed concise-ly in matrix form as follows.

~~o pl x nd de cr bed f ly i e. 2 along1 w it the b 2 ~ l e s o ui n
[bo [I] + [P] + [p]2 -D"

Where the matrix [P] depends only on the shroud chord to diameter ratio and is tabu-
lated in Ref. 2 for a range of X's. Note that [P] J is defined as the self multi-
plication of [Pi j times. The ( [I] + [P] + ... [P] J) matrix should be carried
out to the point where the elements of (P] J are negligible compared to the sum of
the previous terms, the power j of the last term representing the number of iterations
necessary to obtain convergence.

The column matrix bo V is defined by the following set of equations in terms of the
known radial velocities and camber on the right hand side of Eq. (4), and is the result

of the clasical thin airfoil solution mentioned above.
7r

b2-D 2boo = e ed 0s

~ '%o - JEc cosmos5 dqs 5
0

where

V - Vr~
VS)Shroud " o/Prop V Center-

Thickness Wake body

The above paragraphs briefly described the formulation and T.A.R. mathematical
solution for the zeroth harmonic. It is a linearized theory which accounts for the
effects of shroud geometry, propeller circulation distribution, radius and location,
and centerbody shape and location. Inherent in the linearized treatment of the problem
are certain restrictions on the applicability of the method. These restcictions, and
the attempts during this program to alleviate them will be the subject of the following
paragraphs.

12
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6.2 LIMITING ASSUMPTIONS OF THERM ADVANCED RESEARCH MODEL

6. 2. 1 Introduction

Due to practical considerations dictated by the need for mathematical tractability,
certain simplifying assumptions to the mathematical model were necessary. These
assumptions, which were discussed briefly in paragraph 6. 1, manifest themselves as
limitations on the applicability of the theory to certain regimes of operation. During
the course of this contract, attempts were made to alleviate certain of these assump-
tions, in hopes of extending the applicability oi the fheory to a wider range of operat-
ing conditions. The nature of these attempts and their success or failure in improving
the comparisons of test and theory are the subject of this section.

The following represent the major assumptions and the areas in which improvements
to the theory were investigated.

t. Use of Zeroth Harmonic

2. Incompressible low

3. Input of Propeller Circulation Distribution

4. Linearization

The evaluation of these improvements is carried out at a Mach number of. 3. The
value is low enough to make compressibility effects small and yet high enough to sat-
isfy the requirement that the perturbation velocities be small compared to V0 .

The effect of these corrections at the lower Mach numbers is considered in Section
7. 0, where extensive comparisons of test and theory are made for the complete Mach
number range.

6.2.2 Discussion of Zeroth Harmonic Assumption

Exclusion of tile higher harmonics is dictated by the need for a mathemnatically tract-

able solution and computer program and in this sense is not a limitation of the theory
(since the f1ill theory as derived includes the effects of tie higher harmonics). The
validity of this assumption (lel)els primarily on how well tie theoretical and ,oxperi-
imental performance results compare.

Consistent with the zeroth harmonic assumption is 21c representation of the propeller
as an actuator disk. In evaluating the thrust and torque of the propeller, it is neces-
sary to obtain the velocity diagram at each blade station. This diagram is shown in
Fig. 2 for a typical radial position, with the induced velocity broken down into its
various components. The shroud and centerbody induced velocity are obtained from

ji
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PROPELLER VELOCITY DIAGRAM AT TYPICAL STATION
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6.2.2 (Continued)

the zeroth harmonic T. A. R. theory and are discussed in Appendix 11.6. However,
instead of obtaining tle propeller wake induced velocities from the actuator disk re-
presentation of the propeller, a partial accounting of the higher harmonic content of
the propeller induced velocities is obtained by the use of the Goldstein three-dimen-
sional rcpresuitation of the propeller wake, (Ref. 4 & 5).

Hamilton Standard's experience with this method in the design and performance pre-
diction of free air propellers i i f- "ird flight has shown that it accurately predicts
the induced velocity field of the ..... ler wake.

A distinction should be made at this point to clarify the role of the propeller. Its
influence on the velocity diagram is twofold. An indirect influence exists through the

shroud vorticity distribution, which gives rise to the shroud induced velocity of Fig.
2. The propeller influence on shroud vorticity, and, therefore, shroud induced vel-
ocity, enters through Eq. (4), which is valid for the zeroth harmonic and requires the
actuator disk representation for the propeller. The direct influence involves the in-
duced velocity at the blade due to the propeller wake. This velocity is best repre-
sented by the three-dimensional Goldstein theory.

An estimate of the magnitude of the higher harmonics and, therefore, the validity of
the above represeltations of the propeller induced velocity is afforded by the study of

the pressure histories obtained during the test program. These data were obtained
by two pressure transducers mounted in the shroud inner and outer surfaces just up-
stream of the propeller. The pressure fluctuations on the outer surface were small
and indistinguishable for the most part from the inherent background noise signal.
The inner surface fluctuations were much larger and resulted in usable traces. For

purposes of estimating the magnitude of the higher harmonics, this inner signal, since
it is closest to the propeller, represents the velocity field of most interest. The fol-.
lowing discussion is, therefore, limited to consideration of the inner trace.

'Fle velocity at the transducer consists of contributions from the propeller, its wake,
and the remaining singulari ties used to define the shroud and centerbody. A dis-

cussed above, the direct contribution of the propeller wake to the velocity diagram as
calculated b y use of the Goldstein method accounts for the higher harmonics. The in-
direct effect, however, does not, since it manifests itself through the shroud induced
velocity, which is based on the zeroth harmonic representation. The time history of
tie shroud induced velocity, or its equivalent shroud induced pressure, would be in-
dicative of its harmonic content and, therefore, the validity of the zeroth harmonic
representation. If the amplitude of the shroud induced pressure is small compared to
the amplitude of the measured pressure, the major portion of the harmonic content is
due to the propeller and wake, and as discussed above, is properly accounted for by use
of the Goldstein method and the zeroth harmonic calculation for the shroud induced
velocity. If not, inclusion of the higher harmonics is necessary for the calculation of

15
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6.2.2 (Continued)

the shroud induced velocity.

An estimate of the harmonic content of the shroud induced velocity was made by sub-
tractin, the pressure contribution due to the propeller bound vorticity from the exper-
imental pressure history. A complete accounting of the propeller contribution would
also require the subtraction of the wake induced velocity. This entails the calculation,
as a function of azimuthal angle, of the velocity field due to the propeller wake at the
azial location of the pressure transducer, wvhich is-0. 075 shroud chord lengths upstream
of the propeller disk. Methods for calculating this velocity were investigated and found
to be formidable. In addition, the proximity of the transducer to the propeller bound
vortex implies that much of the propeller induced azimuthal variation should be due
to the bound vorticities. For these reasons, only the bound contributions were sub-
tracted out since these could be evaluated with a reasonable amount of work. The V
derivation of the equations for the velocity field of the bound vortices is included in
Appendix 11.5.

The relationship between the shroud surface pressure and velocity is given by Bernoulli's
equation written for a coordinate system rotating with the propeller. This is shown in
Eq. (5).

r 2 2 2 II
S-- = 12+ (5)Sqo Vo2 0

where w = velocity relative to a point in the propeller fixed coordinate system and
contains no time varying quantities since, in this propeller fixed system, all the flow
properties are steady. The time varying pressure field observed from a ground fixed
coordinate system is equivalent to the azimuthal pressure variation observed in the

Apropeller fixed system. Thus, the pressure histories obtained from the test program
c-,n be immediately converted to azimuthal pressure variations in the propeller fixed
system. The following discussion is based on the use of a propeller fixed coordinate
system. The velocity 'W can be written as follows, in terms of its various components

w =(w 0 +vp)1 0 + (Wx + uP) ix

where

Vp tangential component of the propeller bound vortex velocity

up = axial component of the propeller bound vortex velocity

wo, w x  = velocity relative to blade exclusive of propeller bound vortex
\,(, oci ty

16
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Its magnitude squared becomes

w2 = (W
O + vp) 2+ (wx + u) 2

or

2=wp2 + Wx2 + 2Vp wo + 2up wx  + v, 6

P pP (6)
p-p00

Defining a total pressure coefficient C as - , Eq. (5) becomesp qo
22 2 2
2p= (7)

V 2  V 2

0 02

It is this Cp that results from the pressure history obtained in the test program and is

a mown function of 0. A partial pressure coefficient can be defined in terms of we 2

and wx 2, the velocities due to everything but the propeller bound vorticity. Signifying

this velocity and pressure coefficient by the subscript s, there results from Eq. (6):

Eq. wc - (2 VpW 0 + 
2 UpWx +up 2 + Vp2 ) (3)

Eq. (7) can be solved for w 2 as follows

2 2
W 2  + r+ v ...Cp (9)

Substiting q. (9)into Eq. (8), there results

2 2 2 2 ..
V°2  r 1 2--C 2v0w + 2 Cp - + 2! v 0Vo 22 P vO2  V o2 'o 2

From E~q. (7), Cps, the partial pressure coefficient, becomes

2 2r E2 Ws 2

C ps -1 Vo 2  V0 2
(1

17
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Substituting Eq. (10) into Eq. (11), the equation for C becomes

2 VpW o  
2 UpWx u V2

2+C =C+ + + P (12)
ps p 22 22i + V V oo

V0  V0  V0  0

Now wx and Nvo represent the velocity relative to the propeller fixed coordinate sys-
tem. The velocity diagram below shows that Wx and wo are made up of components

due to the axial free stream velocity, propeller rotative speed, and the velocities

(ue and Ve) induced by all singularities except the propeller bound vorticity.

Ue

V o

rQS

In terms of these components, wx and w0 become

Wx V° + ue

wo w P-= ve
r,2+ e

Substituting these expressions for wx and wo into Eq. (1, ) %ps becomes

2 Vpr2 2upVo 2voVe + u2 +v2_

_ " --++ + -+ (13)Cps p + 022 2 V 2 V 2 V 2
0 V0  0  0  0

The quantities up, U., Vp, ve represent the velocities induced by the singularities

in the flow field, and are all small compared to Vo . The last '4 terms of Eq. (13) are

therefore seen to be of second order compared to the remaining first order terms

and can be neglected. Equation (13) thus reduces to Eq. (14)

18
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ps=Cp +v +2 (14)
S'Vo 2  Vo

which relates the partial pressure coefficient Cps to quantities which are lkown either
ana lytically or experimentally.

The pressure coefficient on the right hand side, Cp , is known from the test data, and

the velocity components Up, Vp due to the propeller bound vorticity are known analy-
tically, as described in Appendix 11.5. Thus, everything on the right hand side is
known as a tunction of azimuthal angle. The evaluation of Eq. (14) results in the
azimuthal variation of the pressure coefficient based on all velocities except those
due to the propeller bound vorticities, and should give a qualitative indication of the
importance of the higher harmonics in evaluating the shroud induced portions of the
veloci ty.

Eq. (14) was evaluated for the pressure history corresponding to run number 681-10
in Ref. 15. The operating condition was:

N = 6502

J 1.276

Cp - 0.428

CT prop = 0.24.9

M = 0,103083

The total pressure coefficient is plotted in Fig. 3. Using the propeller circulation
distribution computed for the above case, the velocities induced by the propeller bound
vortex, Up, vp, were computed as outlined in Appendix 11. 5. The partial pressure
coefficient Cps was then obtained from Eq. (14) and is also plotted on Fig. 3. The
amplitude e1 tie partial pressure coefficient is reduced by 54%, indicating that about
half of the harmonic content is clue to the propeller bound vorticity.

Inclusion or the woke indueed velocity would lower the amplitude of the secondaryS'IsStlr(.rv coel'ielnt' eVen further. Thus a large portion of the harmonic content is
t(il directly to the propelllr and is accounted for by the use of (he three-dimensional
Goldstein theory.

19 11
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6.2.2 (Continued)

The excellent agreement exhibited in paragraph 7.4 between test and theoly further in-
dicates that the harmonic content of the shroud induced velocity, which is not accounted-
for by the theory, is small enough to have a negligible effect on performance.

In summary, it appears that the effects of the higher harmonics are cluc primarily to
the direct contribution of the propeller. The indirect contribution which manifesto
itself through the shroud induced velocity appears to be secondary in nature. Thnus,
incorporation of the three-dimensional Goldstein analysis for the velocity field of the
propeller accounts for a significant portion of the higher harmonics, results in an
accurate performance prediction method, and eliminates the necessity of accounting

for the higher harmonics in the shroud induced velocity calculation.

6.2.3 Discussion of Incompressible Flow Assumption

The assumption of incompressible flow is not severely limiting unless the free stream
I Mach number is hi g h or the shroud area ratio and/or thickness form is large. For

those cases whc'e compressibility effects can be significant, a study of the applica-
bility of the Karman-Tsien (K-T) correction to the flow field was undertaken. As de-
rivec, the K-T correction is applicable only to two-dimensional flow. Since'the flow
about the shroud is axisymmetric, the governing compressible flow equations must
be written for a cylindrical coordinate system. The K-T correction, however, is
based on use of the flow equations written for a two-dimensional Cartesian coordinate
system. These equations are listed below in terms of the velocity potential 0, and
speed of sound o,

Sc xx +  2 ezz c2 * zx = 0

c

where Or represent, etc. Since Or, the radial velocity, is small, the two
tequations are seen to approach each ohor as r gets large. Thus, for flow about the

shroud, %\,here r tends to be large, ihe two equations are similar if 0r is small and
the K-T pressure correction niay be applicable. Near die shroud centerline, where
r is sinall, die equations differ and the K-T correction is definitely not applicable.

Comparison of theoretical and experimental shroud pressure distributions for the 1.1
and 1.3 area ratio shrouds for the. 3 and . 5 Mach number cases are shown in Fig. 4

21
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thro igh 7. The pressure coefficients in these figures has been corrected for the singu-
Larity in leading edge pressure due to the shroud camber line vorticity distribution by
use of the Riegels fctor, which will be discussed in paragraph 6.2.5c, but do not in-
corporate the K-T correction. The agreement of the incompressible theory with the
test data is good for both Mach numbers.

The agreement on the outer surface for the. 3 Mach number case is very good. At
M =. 5 the agreement is good except in the leading edge region. However, due to
application of the Riegels correction, which at best is approximate, the resulting
pressure distributions in the leading edge region cannot be expected to be highly -.ccu-
rate. Application of the K-T correction would improve the agreement in the leading
edge region somewhat and worsen it from the quarter chord point to the trailing edge.

On the inner surface, for 0. < X < . 2 the theory is seen to predict pressure co-
C

efficients which are more negative than the data, indicating over-estimation of the
velocity magnitude. Application of the K-T correction would cause the pressure
coefficients to become even more negative. It appears then, that the over-estima-
tion of velocity by the incompressible T.A.RB. theory in the leading edge region tends
to compensate for the effects of compressibility. In view of these observations,
coupled with the questionable applicability of the K-T correction to axisymmetric
flow fields, ho direct account will be made in the program for compressibility
effects on the shroud pressure distribution.

The propeller velocity diagrams have not been corrected for the effects of compres-
sibility because, as discussed above, the K-T correction becomes invalid as the In-
board stations of the propeller are reached. In addition, it has been Hamilton Standard's
experience that compressible propeller performance is well predicted by using the in-
compressible Goldstein solution with compressibility effects accounted for only in the
airfoil data.

6.2.4 Inclusion ef Propeller Geometry

The usefulness of an analytical prediction method for shrouded propellers depends in
part on its ability to prf-lict the performance of a given shroud and propeller geometry.
The T.A.R. theory, as discussed in paragraph 6.1, requires that the propeller circula-
tion distribution be specified. This approach permits the definition of the propeller
'cometry consistent %ith the specified circulation distribution but cannot predict the
circulation of a propeller whose geometry is pre-defined.
l'o eliminiate this shortconming, Ia iii ilton Stanlat'd has devised an iterative iiethod

whic(h permits propeller geometry instead of circulation to be used as an input. 'T'he
essence of the method is as follows.

a) The propeller geometry is defined, i.e., the blade angle, chord, arid airroil
section are specified as functions of blade radius; the airfoil lift and drag

characteristies are also specified.

22
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6. 2.4 (Continued)

b) An initial estimate is made for the induced velocity in the propeller plane
e to shroud voi. Lcity 'the thicknes6 and cnttrbody induced velocities are

.lnoj in terms of the shroud awid cefiterbudy thickness forms, as discussed
ixi paeagraph 6.1).

c)o The Goldstein strip theory is then used to obtain the propeller circulation
and propeller induced velocities at each station. An iterative process is
involved in this computation, as described in paragraph 6.6.2.

d) Having an estimated propeller circulation, the shroud vorticity distribution
is determined and the shroud induced velocity at the propeller plane com-
puted.

e) This computed velocity is compared with the initial estimate. If the two
agree within a specified tolerance, the solution is complete. If not, a new

estimate is made and the procecs repeated until convergence of the velocity
field results.

Experience with this method indicates convergence requires 4 to 5 iterationis. The
computer progian has been written to include the iterative process and is described
more fully in paragraph 6.6.

6. 2. 5 Discussion of Linearization Assumptions

6. 2. 5a Introduction

The greatest restrictions imposed on the T. A.R. model result from the linearizations
necessary to make the theory mathematically tractable. These linearizations require
that the induced velocities due to the various singularities in the flow field be small
relative to the free stream velocity, which in turn requires that the camber and thick-

ness be small.

Due to these restrictions, extension of the theory to low free stream velocities, or
for a high free itream 'clocity, to large cambers and thicknesses, is questionable.
Since both of these areas are of interest, various investigations were made during the
course of this contract to remove some of ie linearization assumptions inherent in
the model. These investigations will be discussed in the following paragraphs and
are divided into three categories:

I. Representation of Shroud and Centerbody Geometry

2. Representation of Propeller and Wake

3. Satisfaction of Shroud Boundary Conditions
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6. 2. 5b Representation of Shroud and Centerbody Geometry

The centerbody is represented by a distribution of sources and sinks along the shroud
centeriine. The shroud geometry is represened by a distribution uf source-sink rings
and vortex rings along the shroud reference cyiinder, the source-sink rings tepre-
senting tie Lhickness and the vortex rings representing the camber. Consid :.aion
was given to redistributing the shroud singularities along the meat. camber Ltnc in-

stead of the shroud rewcrence cylinder. This, however, would entail major changes
in the equations defining the shroud induced velocities. In addition, changing the
shroud reference cylinder radius from that defined by the T. A. R. theory (i, C., the
intersection of the camber line with the propeller plane) to the shroud trailing edge
had a secondary effect on the shroud pressure distribution and propeller performance,
indicating that the added mathematical complexity required by the modification would

result in only secondary changes and is, therefore, not warranted.

In computing the shroud pressure distributions, the velocity at the shroud surface is
approximated by its value along the shroud reference cylinder. The error inherent

in this assumption was investigated by computing the velocity distribution in the plane
of the propeller from the shroud reference cylinder inward towards the centerline.

The true shroud surface velocity at the propeller plane was then compared with the
velocity at the shroud reference cylinder. This velocity was converted to a pressure
coefficient, and the ratio of the difference in pressure coefficient divided by the pres-
sure coefficient at the shroud reference cylinder is plotted in Fig. 8 as a function of
propeller power coefficient for the 1.1 (B1) and 1.3 (B4) area ratio shrouds. The
change in pressure coefficient is of the order of 4-12% depending on the propeller
power coefficient. However, the effect of using the shroud surface is to increase the
pressure coefficient at the propeller location, which would cause poorer agreement
between test and theory. The effects of compressibility tend to compensate for this
increase in pressure coefficient and account in part for the good agreement exhibited
between test and theory. The fact that differences on the order of 4-12% can occur
indicates that consideration should be given to the calculation of velocities on the

shroud surface. This entails a change in the velocity equations, a corresponding
change in the computer program, and a slight increase in computer time. It is recom-
mended that this modification be further investigated and incorporated during future
studies.

6.2.5c Riegels Factor

The distribution of shroud vorticity along the reference cylinder results in a singular-
ity in velocity at the shroud leading edge. This singularity causes the pressure co-
efficient to approach minus infinity at the leading Udge, rendering the leading edge

results invalid. Such a singularity is inherent it. all thin airfoil theory and is observed

in the classical solution for the flow about a flat plate (See, for example, Ref. 6).
Removal of this singularity has been incorporated in the program by application of a

correction due to Riegels (Ref. 7). This correction eliminates the singularity at the
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6.2. 5c (Continued)

leading edge by treating the flow as thcugh the leading edge were elliptical instead of
the sharp edge representative of the reterence cylinder vorticity distribution. The
correction is given in terms of the slope of the thickness form and is applied to the
velocity calculated by the linearized theory, i.e.,

Vor -d V linearized (15),
Vcorrected - - I____

where Vlinearized is the total velocity at some chordwisc position based on the

linearized theory and dy/dx is the slope of the thickness form. This correction is
significant only in the leading edge region, where the rate of change of thickness with

~chordis large and approaches infinity at the leading edge. In the program, this correc-
tion is applied from the leading edge to the point of zero slope of the shroud thickness form.

The velocity, V linearized' is composed of contributions from the shroud source-sink

distribution, propeller wake, and centerbody as well as the shroud vorticity. Of these,
the shroud vorticity and source-,ink contributions are unbounded as the leading edge

is approached, and warrant further investigation. Note that the shroud source-sink
contribution is unbounded because, within the linearized assumptions, the source-ink
distribution is proportional to dy/d, which is infinite at the leading edge. It is neces-
sary then to investigate the limit of Eq. (15) as R - , (i. e., as the shroud leading

edge is approached). To do this, it is necessary to investigate only the singular terms
of the velocity contributions, since the non-singular terms approach zero with appli-
cation of the correction. For the shroud source-sink distribution, this term is of the
form,

Vthick A LIn (16)

where A is a constant.

ihe shroud vorticity equation takes the form,
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x
boo

Vvor= 2 (17)

Before substituting Eq. (16) and (17) into (15), the thickness form must be ex-
pressed in terms of Y. In the T.A.R. theory, the thickness form, 3, is expanded
into the following series.

+  An (x+) (18)

n

Taking the derivative cf Eq. (18), retaining only the singular term, and substituting
into Eq. (1.5), the value of the corrected velocity becomes

FAb ~ 00  [ 1/2

x/X+ 1 ((x)) ~ 9

lim Veorrected i - 1/2 1A/2
xx--- LA~ 20 (x +X)

The limit of the first term in Eq. (19), representing the thickness contribution, is
zero, whereas the limit of the second term becomes

2bo

lira Vcorrected A Ao

where Ao is related to the shroud leading edge radius.
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Application of the Riegels correction thus causes the singularity due to thickness to
become zero and the sringuiarity due to camber to approach a finite limit. ihe results
of appiyIng Chis factor to a typical case are shown in Fig. 9 and 10. The dotted line
represents the uncorrected linearized theory, the solid line represents the corrected
theory, and the symboWs represent the test daLa. The agreement uith test iii the lead-
ing edge region greatly improved, not only for the case shown, but for all cases inves-

tigated (See for example Fig. 4 thru7)Y. This factor has been incorporated in the
program, and all pressure distributions are corrected by its application.

In summary, the shortcomings of the shroud and centerbody representation discussed
were:

a) The use of a shroud reference cylinder for the distribution of vorticity and
sources and sinks.

b) The use of the reference cylinder instead of the shroud surface for -omputa-
tion of velocity.

c) The siugularit in pressure coefficient at the leading edge inherent in thin
airfoil theory.

The effect of incorporating item (a) appears to be small and Is not warranted because
of its added mathematical complexity. Item (b) was seen to be significant for thicker
shrouds such as the 1.5"' thick shroud of this test program, and it is recommended that
any further activities include this modification, The singularity of item (c) repre-
sented a serious limitation on the usefulness of the pressure distributions, but, as
was shown, the Riegels correction eliminated the singularity and greatly improved the
agreement between test and theory.

6.2.5d Representation of Propeller and Wake

Haing discussed the limitations of the shroud and centerbody representation, dis-
cussion of the propelle.r and its wvake remains. In defining the flow field of the pro-

peller, be it actuator dLsk or finite bladed, it is necessary to snecify the pitch of the
hulical sheets which represent the propeller wake.

The geometric pitch o r li , L'01pller, dCfincd as the axial distanec :i dlade lement
Ur., "ls in one; vevoltLion, is given as

Pg/R 27r Vo/Rp9

and is invariant with radius.
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The actual pitch of a helical filament, which, in reality is convected downstream by
the local velocity, is a, function of radius and is given as

27rVa
Pt/Rp

where the tangential induced velocity is neglected relative to Rp2 and where Va is the
axial velocity at the blade, and includes the induced velocities. For the light loading
case at high forward speed, Va - Vo , and so

Rp Rp 2 "Rp

11 These are the conditions under which the assumptions that the wake pitch is constant
and equal to the geometric pitch are valid.

For shrouds with large thickness ratios and/or camber lines, or for low forward speed,
the shroud Induced velocity can be large compared to Vo, and so the assumption that B
Va z V Is invalid. It is necessary, therefore, to replace the geometric pitch by
the actual pitch in describing the propeller wake. This is an integral part of the
Hamilton Standatd method for calculating the propeller wake induced velocity and so
needs to be accounted for only in the expression for the radial velocity at the shroud
reference cylinder due to the propeller wake. This velocity is given in Ref. 1
in terms of Jo', the geometric advance ratio, as

-' - 1/2
Vr 1 B (r Q/ ( d/ (20)

-V ~ f 2;T2 Q1/ 2 (i 3 ) rv dryv
0o 2 Jot

0

where 11 , the geometric advance ratio is defined as the tangent of the geometric pitch
: 11 ( 1and is gIi'd in by

, Vo
(I I5
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In the spirit of the discussion above, the definition of advance ratio should be based
on the loCal pitch, i.e.,

_ Vat "J'2- J' 2 (r'v)

To evaluate Va, it is necessary to know the shroud and propeller induced velocities.
Since Hamilton Standard has altered the T. A.R. method to accept propeller geometry
by iteration on Va, it is straighforward to include the evaluation of J'2 at the end of
each iteration. As noted, the effect of wake pitch is accounted for in the propeller

4induced velocities through the use of the Hamilton Standard propeller theory.

A preliminary investigation into the use of J as a function of radius in Eq. (20) (i.e.,
a distorted he-ical wake), indicated that a major change ir. the integration method was

required. Instead, J was defined in terms of the average axial induced velocity over
the disk and was thus not a function of radius. Use of J so defined, instead of J0, in
Eq. (20) then becomes a matter of straight-forward substitution. In this manner, a
better representation of the wake was obtained with little added cost in complexity and
computer time. The good agreement between test and theory exhibited in paragraph 7.4
further justifies this approach.

The propeller thrust and power coefficients as functions of blade angle calculated by
use of Jol and J are compared in Fig. 11 for the B1-3WT and the B4-3WT shrouds.
A Mach number of about 0. 3 has been used for the comparison. The effects on per-
formance are seen to be negligible for both area ratios, although the use of J2 tends
to give slightly higher values of Cp and CT prop. The comparison of these calculations
with experiment is shown in Fig. 12. Due to the small differences between the two
A,,ethods, both have been plotted on a single tine. The predicted variation of propeller
thrust coefficient with power coefficient is seen to agree very well with the data. The
blade angle agreement, on the other hand, is not as good. For a given power coeffi-
cient the predicted blade angles are higher than the experimental values. As is shown
in the following section, this agreement is improved by use of a correction to the
propeller wake representation which accounts for the proximity of the shroud.

The shroud pressure distributions resulting from the use el: JO and J are tabulated
in Fig. 13 for the BI.-3W'T' only, since the conclusions for the Bt-3WT are the same.
Again the effect of the advance ratio definition on pressuro, distribution Is quite small.
The test values are also shown in Fig. 13, and as can be aon the comparison between
test and theory Is very good, except for the leading edge region. The disagreement In
the leading edge region is typical and has been discussed previously. At the lower
Mach numbers, a more pronounced effect Is noted and will be discussed In paragraph 7. 4. 2.
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E FfECT ON THEOREfTAL -PEFOfPRMANCE OF
USING J OR J IN EQUATION (20)

B 1-3WT
M = .3053
J = 1.5087

I

J0 J2

03/4 CT PROP Cp CT PROP Cp

30 .0310 .0582 .0312 .0584
34 .0919 .158i .0922 .1584
38 .1485 .2679 .1491 .2687
42 .2019 .3884 .2028 .3896

B4-3WT
M = .310
J =1.511

J 0 J2 .

03/4 CT PROP Cp CT PROP Cp

38 .0724 .1521 .0726 .1526
42 .1363 .2936 .1369 .2948
46 .1956 .4452 .1968 .4472
50 .2483 .6059 .2498 .6083

FIGURE 11.
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EFFECT OFJ(6 & J ON SHROUD PRESSURE DISTRIBUTION

BI-3WT
M = .3053
J = 1.5087
9 --380

3/4

THEORY TEST
J0 J2 ,.L,

X/C INNER OUTER INNER OUTER INNER OUTER

.0125 .7137 -1.0985 .7330 -1.1409 .150 -1.1
.025 .1228 -1.1748 .1524 -1.2092 -. 20 -1.2
.05 -. 6535 -1.0585 -.6194 -1.0835 -. 57 -1.08

.075 -. 9587 -. 8708 -. 9263 -. 8902 -.72 -0.8
.10 -. 9985 -. 6999 -. 9690 -.7155 -. 74 -0.76
.15 1-.7827 -. 4753 -. 7597 -. 4867 -. 60 -0.42
.20 1-.5170 -. 3824 -. 4991 -. 3917 -. 35 -0.35
.25 1-.3189 -. 3669 -. 3048 -. 3746 -. 29 -0.37
.3 -. 1953 -. 3830 -. 1842 -. 3897 -. 25 -0.31

I.4 -. 0906 -. 3913 -. 0840 -. 3958 -. 15 -0.28

.5 -. 0541 -. 3112 -. 0515 -. 3142 -. 05 -0.20
.6 -. 0067 -. 2080 -. 007 -. 2097 .05 -0.12
.7 .0856 -. 1396 .0836 -. 1409 .12 -0.05
.8 .1839 -.119 .1811 -.1134 .19 0.02
.9 .2460 -. 012 .2432 -. 0169' .25 0.15
.95 .2809 .1254 .2781 . .28 0.12

FIGURE 13.
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II

In calculating the propeller wake induced portion of the velocity diagram, the Gold-
stein representation of the wake is used. This representation assumes that the wake
is -isolated and therefore does not account for the presence of the shroud. Ref. 8 by
Goodman presents a correction to the flow field of the propeller wake in the presence
of a wall. The flow about the edge of the true helical wake is approximated by an
array of semi-infinite flat plates whose spacing is equal to the pitch of the helix,
while thewall, which extends from plus infinity to minus infinity, Is placed a distance d
away, as shown in Fig. 14. The derivation of the correction and Its application to
the Goldstein representation of the propeller wake are discussed in detail in Appendix
11.2.

The correction is derived for the case of a wall extending to Infinity. In the shrouded
propeller case, the wall, which represents the inside surface of the shroud, does not
extend to Infinity and is adjacent to the wake for only a finite distance downstream.
However, in computing the velocity field of the propeller wake, the elements of wake
vorticity in the immediate vicinity of the propeller have the largest contribution. It
is this portion of the wake then that should be represented as accurately as possible,
prompting the use of the Goodman correction. The error Introduced by assuming the
shroud extends to infinity should be small except for those cases in which the propel-
ler is located near the shroud trailing edge. For the geometries involved in this pro-
gram, this was not the case and the correction should be valid.

The effect of this correction on the analytically predicted performance and shroud pres-
sure distribution for B1-3WT and B4-3WT are shown in Fig. 15 through 17 for the. 3 Mach
number case. The tabulation of Fig. 15 shows that for a given blade angle the power
and thrust coefficients are increased by application of the correction. The predictcd

and experimental results are compared in Fig. 16. The propeller CT versus Cp
plot shows excellent agreement between test and theory and a negligible effect of the
Goodman correction on the theoretical predictions. A significant change results In
the blade angle versus Cp plot. The application of the Goodman tip correction greatly
improves the correlation between test and theory. Fig. 17 indicates that the tip cor-
rection has a small effect on the shroud pressure distribution and that agreement be-
tween test and theory is fair.

The improved agreement brought about by application of the Goodman tip correction
can bi understood by inspecting Fig. A-5 of Appendix 11. 2. The factor F is directly
proportional to the blade loading or circulation, whereas f is proportional

rv
to (1- Ty. As rv Rp, f - o, so at the tip, . = 0 and the circulation Is zero. The
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EFFECT OF GOODMAN TIP CORRECTION ON THEORETICAL PERFORMANCE

(J USED IN EQUATION 20).

B1-3WT
M = .3053
J = 1.5087

NO GOODMAN WITH GOODMAN

34 cT PROP Cp CT PROP Cp

30 .0312 .0584 .0330 .0608
34 .0922 .1584 .1012 .1718
38 .1491 .2687 .1654 .2940

.2028 .389611 .2250 1.429,

B4-3WT
M =.31
J = 1.511

7 NO GOODMAN WITH GOODMAN

3/4 CT PROP Cp CT PROP Cp
38 .0726 .1526 .0809 .1674
42 .1369 .2948 .1542 .3270
46 .1968 .4472 .2229 .4999
50 .2498 .6083 .2814 .6824

FIGURE 15.
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EFFECT OF GOODMAN TIP CORRECTION ON SHROUD PRESSURE DISTRIBUTION

B1-3WT
M = .3053
J = 1.5087

03/4 =3F
(J USED IN EQUATION 20).

j THEORY' TEST

INO TIP CORRECTION WITH TIP CORRECTION

X/C INNER OUTER INNER OUTER INNER OUTER
.0125 .7330 -1.1409 .7107 -1.0962 .150 -1.1
025 .1524 -1.2092 .1176 -1.1739 -.20 -1.2
.05 -. 6194 -1.0835 --. 6605 -1.0589 -. 57 -1.08
-075 -. 9263 -. 8902 -. 9664 -. 8717 -.72 -.80
.1 -. 9690 -. 7155 -1.0064 -. 7012 -. 74 -. 76

.15 -. 7597 -. 4867 -. 7905 -. 4769 -. 6 -. 42
.2 -.4991 -.3917 -.5244 -.3844 -.35 -.35
.25 -. 3048 -. 3746 .-. 3260 -. 3694 -.29 -. 37
.3 -. 1842 -. 3897 -. 2018 -. 3859 -. 25 -.31
.4 -. 0840 -. 3958 --. 0930 -. 3920 -.15 -.28
.5 -. 0515 -3142 -. 0507 -. 3076 -. 05 -. 20
.6 -.007 -.2097 -.0028 -.2051 .05 -.12

.7 .0836 -. 1409 .0888 -. 1373 .12 -. 05
.8 .1811 -. 1134 .1860 -. 1098 .19 .02
.9 .2432 -.0169 .2476 -.0133 .25 .15

.95 .2781 .1237.1 .2825 .1269 .28 .12

FIGURE 17.
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6.2. 5d (Continued)

parameter g on the curve is proportional to the spacing between the tip of the-propel-
ler and the shroud. As the spacing decreases from infinity towards some finite vale,
the load the propelle- carries at any given station increases as indicated by the larger
value of F. This increase in loading results in an increase in both power absorption
and propelier thrust for a given blade angle. The increase in thrust and power is
such that the excellent agreement of the CT versus Cp comparisons is maintained. The
poor agreement between blade angle and Cp is however improved. The Goodman tip
correction therefore manifests itself as an increase in loading near the propeller tip
due to the presence of the shroud. Its validity is substantiated by the improved com-
parison of test and theory.

In this section, two modifications to the representation of the propeller and its wake
have been discussed. The first was the inclusion of J' 2 instead of J'o in Eq.
(20). Comparisons with test data Indicated small changes in performance and shroud
pressure distribution for the 0.3 Mach number case and good agreement between test
and theory. The second modification accounted for the presence of the shroud In the
flow field of the propeller wake through the use of the Goodman tip correction. This
correction did not alter the CT prop versus Cp and shroud pressure distribution agree-
ment with test data, which was good, but 'did bring the blade angle-Cp relationship.
into much better agreement.

6. 2. 5e Discussion of Shroud Boundary Conditions

The satisfaction of the no-flow boundary condition on the shroud, due to the lineariza-
tion procedures, reduces to the independent satisfaction of two boundary conditions;
one for the shroud camber line and one for the shroud thickness. The former led to
the equation for the shroud vorticity distribution (Eq. 4) discussed in paragraph 6.1. 2.
This equation was derived from Eq. (1), the linearized boundary condition on the shroud
camber line. In the following, a more exact version of Eq. (1) will be derived, based
on the exact boundary condition equations and the assumption that the singularities be
distributed along the shroud camber line.

The no-flow boundary condition Is shown schematically in Fig. 18, and results in 7he
following equations:

tan Cu(X) =--...-- ' (21a)Vo + u  , ,

VrLtaln El,(X) = (211,)

Vo + UL
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SCHEMATIC REPRESENTATION OF SHROUDBOUNDARY CONDITION

r HCKES1r
CAMBf

'I+UuLN
rL

C =S LOPE OF THE CAMBER LINE

tan (.u = Vru

ta~n = VrL
V + UL

~ I FIGURE 18.
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These equations can be simplified by approximating the values of the perturbation
velocities at the upper and lower surfaces by calculation on the shroud camber line.
Thp rpiiVl nnf! a-Jdl v9R,1ity above and below the shroud can then be divided into a
continuous and discontinuous part. The continuous part is due to singularities in the
flow field remote from the field point in question whereas the discontinuous is due to
singularities at the field point. For the particular case of a field point on the shroud
camber line, the discontinuous part is due to the shroud vorticity and source-sink

distributions. These discontinuous velocities are'shown schematically in Fig. 19.
The velocity discontinuities are proportional to the local source sink and vorticity
strengths and manifest themselves as equal but opposite contributions above and
below the camber line. Utilizing the notation of Fig. 19, the boundary conditions
(Eq. [21a] and [21b] ) become, in terms of the axial and radial components of the con-
tinuous and discontinuoue velocities

Vrc + VrD
tan eu = -. (22a)

Vo + Uc - UD

Vrc - VrD
tan EL = ' (22b)

Vo + Uc - UD

Before proceeding, it is necessary to define the left hand side of these equations In

terms of the camber distribution and thickness form. The assumption that the shroud
is thin and slightly cambered implies that Cu and EL are small, so that tan Eu 2 Eu,
tan EL c- E L This approximation is valid for values of E approaching. 5.
For example at C =. 5, tan E = 55 so the error in the assumption is of the
order of 10%. Replacing tan Eu by Eu and tan EL by E L, the slopes of the
upper and lower surfaces are defined by the slope of the mean camber line and the
slope of the thickness form. If E is the slope of the mean camber line and t' the
slope of the thickness form, then for thin slightly cambered sections,

Eu = E+ti

EL E - t'

and Eq. (22a) and (22b) become
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DISCONTINUOUS VELOCITIES ALONG SHROUD CAMBER LINE

- -- SHROUD

UTD UVD CAMBER

ELINE

;V j
UTD = DISCONTINUOUS VELOCITY

DUE TO SOURCE-SINK
DISTRIBUTION

UVD = DISCONTINUOUS VELOCITY DUE
TO VORTICITY DISTRIBUTION

DISCONTINUOUS VELOCITIES

UD = UTD -UVD

Ir UD = UD " + VrD lr

UVD

1VrD

UTD ..

UD

RESOLUTION OF DISCONTINUOUS VELOCITY INTO AXIAL & RADIAL
COMPONENTS - (UPPER SURFACE)

FIGURE 19.
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Vrc + VrDE+1 t1=..... . (23a)

E-t = V rD (23b)

Vo + U e - UD

The small camber and thickness assumption indicates that the shroud camber line
never deviates significantly from the shroud reference cylinder. This affords a
further simplification in that the velocity components can be evaluated on the shroud
reference cylinder instead of the shroud camber line and the singularities distributed
on the shroud reference cylinder.

Dividing top and bottom of Eq. (23) by V0 and adding, there results

2 f=- + ,+
V0  Uc  Uc UD Vo  Uc  UD  Uc UD

S + 1+ + 1 +
Vo Vo  Vo V o  Vo Vo Vo

Defining barred quantities to be non-dimensional velocities, this equation becomes,
after algebraic manipulation,

2 --Vre (I + Uc)- 2 UD VrD
2C=

(1 + Uc2 w n 2

Now the last term m the numerator Is of second order compared to the first order

term Vrc (1 + U'c) and is neglected. The U2 term in the denominator is
also second order compared to the (1 + Uc) term, and It also can be neglected.
Note that the term UC was not neglected when compared to 1, so the equation
becomes

Vrc (24)

1 + T

Eq. (24) is in much simpler form than Eq. (22) and depends only on the continu-
ous part of the velocity, 19, . As will be discussed, this form permits a more rig-
orous satisfaction of the boundary condition within the existing framework of the analysis.
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To reduce Eq. (24) to the boundary condition of Eq. (1), it is further necessary to as-
sume that Uc < 1 . Thus the boundary condition Eq. (24) requires less restric-
tive assumptions for its derivation.

To indicate the order of magnitude of the velocity Uc , the continuous part of the
axial velocity, which is used in the calculation of the shroud pressure distribution,

was plotted as a function of shroud chordwise position in Fig. 20 for the Bi - 3 WT
shroud at a Mach number. 3. The assumption that Uc is much less than unity is
seen to be violated, indicating the need for the more accurate boundary condition of
Eq. (24). This assumption is violated further as the free stream velocity approaches
zero. To improve the accuracy of the theory in the forward flight regime and to extend

its validity to lower-forward flight velocities, the use of Eq. (24) in place of Eq. (1)
was investigated.

Solution for the shroud vorticity distribution must now be based on Eq. (24) instead
of Eq. (1). The appearance of the term Uc in Eq. (24) greatly complicates its
solution, However, by an additional iteration procedure, it is possible to satisfy
Eq. (24) and still to use the method of solution described in paragraph 6.1.2 for Eq. (1).
Thus incorporation of Eq. (24) requires only small changes in the computer program.
For the first itcra,.on, Uc is assumed zero. The solution thenproceeds in the nor-
mal fashion and results in a first estimate of the axial velocity Uc . The next

stop is to define a new shroud camber by multiplying the true camber distribution by
(1 + Uc 1 )) . The cambe.r distribution for the second iteration is thus E(2)= (1 + Uc),

and Eq. (24) takes the formih

=V (+ (1) (25)E(2) = rc ec25

I Eq. (25) has the same form as Eq. (1), and is solved by the existing method in terms

of 1E (2) Instead of the geometric camber C . This process Is repeated until

Uc (n) c; (n +1 , where Is sonc desired tolerance. Note, in general, that

en --q,,1 + UC , that is, the geometric camber is corrected by the latest value of

I) to l)tain (he eff'ective canber for the subsequent iteration.

Application of this correction to the . .1 and . ,., Mach numlber eases was investigated.
The low Mach number case will he disuussed in pragriph 7. I. 2 although (taliltatively
the conclusions are similar to the . 3 case discussed in the following.

Utilizing Fig. 20, the effective camber C (2) for the second iteration was computed.

Plots of OE (2) and 4 the geometric camber are shown in Fig. 21. The value of

6(2) at X/C 0 0 was obtined by extrapolation from the 0. 025 station because the

continuous contri)ution from the shroud source- sink distribution exhibits a singularity

at the leading edge which would lead to an unrealistic correction.
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The effect on performance of utilizing E(2) instead of E was found to be small.
The effect on pressure distribution was also small and in a direction that hurt the
agreement between test and theory. In addition, the changes in the continuous axial
velocity, Uc (X) were small enough to warrant only two iterations. The pressure
distributions for the first and second iterations are plotted in Fig. 22. The perfor.-
mance changes for the 380 blade angle are shown in the following table:

0=38 M =.3 J = 1 . 5087

Icration No. Cp CT Prop

1 .2940 .1654
2 .2915 .1634

Similar results were noted for the. 5 Mach number case. The effect of this correc-
tion on the low Mach number results was also investigated, and while the correction
( I + Uc ) was much larger, it had a small effect on performance and shroud pres-
sure distribution, and is discussed further in paragraph 7. 4. 2. Since the effect of the
correction on performance was small for the Mach number range, . 05 to. 5, while
the computer time for its calculation nearly doubles because of the added Iteration,
it has not been Incorporated into the program. If, in use of the program, a case
arises where this correction is desired, it can be lmpl'm-,ented by calculating the
correction ( 1 + Uc ) from the printed output, applying it to the known geometric
camber and inputing the resulting corrected camber for execution of the second
iteration.

6. 2. 5f Summary of Linearization Assumptions

Removal of some of the restrictive assumptions imposed by the T.A. R. method
were investigated. These investigations were divided into three items dealing with:

1. Shroud and centerbody geometry
2. Propeller geometry and its wake
3. Shroud boundary conditions

Under Item 1, the effect of changing the location of the shroud reference cylinder was
found to be negligible. The effect of computing the shroud surface velocities at the
shroud surface instead of the shroud refcrl'ce eylinder was found to result In changes
In pressure coefficient on the order of 1'c ' but due to the major program changes re-
quilrcd, could not be incorporated into the present method. It was recommended that
future attempts at Improving the theory include this effect. The loading edge singu-
Iarity in pressltrc i nher-ent in the lincarlhcd model was corrected by the use of the
Riegels factor, and resulted In much better agreement between test and theory.
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This factor has been incorporated as an integral part of the program.

Under Item 2, two corrections were investigated and incorporated, the first being the
use of J' 2 instead of J'o, the second being the application of the Goodman tip correction

*to account for the effects of the shroud on the flow field of the propeller wake.

Finally, under item 3, a more accurate boundary condition was derived to permit
extension of the theory to lower forward flight velocities and/or to thicker qhrouds at
the higher velocities. Application of this significant correction, by use of an iteration
procedure, resulted in small changes in overall performance and shroud pressure distri-
bution. Due to the increased computer time required, it was not included as an integral
part of the program, although it can be utilized with the existing program by the inter-
mediate use of a simple hand calculation.

6.2.6 Summary of Limiting Assumptions

Limitations of the T. A. R. method have been discussed, and the method presented herein

utilizes the T. A. R. model and solution with the addition of the following refinements.

t. The Hamilton Standard propeller method, based on Goldstein, for the
calculation of the propeller induced velocity field.

2. The iteration process which permits propeller geometry to be specified.

3. The use of an average J12 instead of J'0 in Eq. (20).

4. The use of the Goodman tip correction.

5. The use of the Riegels factor for correction of the shroud pressure dis-
tribution in the leading edge region.

6. The option, requiring an intermediate hand calculation, for the inclusion
of the more accurate boundary condition given by Eq. (24).

7. The effects of an arbitrary propeller centerbody.

6.3 STIIROUD TIRUST CALCULATION - INVISCID

6i."3. 1l Inlroductioln

The preceding discussions were concernc(I with increasing thc accuracy of the pro-
dicted velocity field of the shrouded propeller. The subject of shroud thrust has been
deferred, since its prediction depends in part on an accurate knowledgc of the velocity
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field. Methods for computing shroud thrust will be discussed next. Two approaches
leading to three methods for the calculation of shroud thrust have been investigated.
The first approach, suggested by T.A.R., obtains the shroud thrust by integrating
the forces on the shroud vorticity and source-sink distribution. The first method re-
quires knowledge of the velocity field as well as the source-sink and vorticity dis-

tribution and is the method utilized in Ref. 9 for the calculation of shroud thrust.
The second approach applies the momentum theorem to a control volume surrounding
the shroud, and results in an expression for total thrust. Different estimates of the
jet velocity in this expression result in the second and third methods for calculating
total thrust. Corrections for viscous drag are discussed in paragraph 6.4.

6.3.2 Shroud Thrust - Detailed Integration Method (Method 1)

Consider Fig. 23, which shows the shroud source-sink and vorticity distributions.

The thrust force on an element of vorticity is given by the classical equation for the
force on a vortex element in terms of the radial velocity at the shroud reference
cylinder. This radial velocity is due only to those singularities external to the shroud
vorticity distribution and is, therefore, composed of contributions from the center-
body and propeller wake. The elemental axial force due to the shroud vorticity is

shown in Eq. (26).

dFV = P(V + VCB) 2?rRydX s  (26)

where the sign convention is defined in Fig. 23. V "! is the radial velocity due to
the propeller wake and VCB that due to the centerbody. The radial velocities V-0 and

VCB have been evaluated previously for use in Eq. (4) and their sum is given in Eq.

(27) in terms of the known b 2 -D's discusse. ',n paragraph 6. 1. 2.
OV

[b 0D(CB) b2-.D(7;1) 2-D(CB) 2-D(F')
VT' VCB 1 0+ 00(b., +b

Vo Vo 2 2 2 2/

(27)

where s is the Glauert variable defined by

Xs_= -x, cs4

R S

56



~HSER 4776
Hamilton U HSe 4

.DV TI E AIPCPAT C4QP0AT*,NVolum e I

Standard A@

FORCES ON SHROUD VORTICITY AND SOURCE - SINK DISTRIBU7 IONS

vfVyKC SHROUD

• .. REFERENCE

YdXs CYLINDER

R
r 

___

FORCE ON VORTICITY DISTRIBUTION

ft(Xs)dXs UCB+ Uf' SHROUD

-REFERENCE
CYLINDER

R

r

x

FORCE ON SOURCE-SINK DISTRIBUTION

FIGURE 23.

57



H m o U HSER 4776
Standard ,O ..... p o.o.,,® Volume I

'6.3.2 (Continued)

2-D
and the superscript in brackets indicates the contribution toboy as indicated, i.e.2-D -12-D

b2D ("') is the contribution to bo- due to the propeller wake, etc.
In addition, the shroud vorticity distribution is known from the solution of Eq. (4) and

is given in terms of the known bo' Is as

Y (0s) boo cot 0 +1" b ol inv (8
Vo  2 s9 2 s(8

Substituting Eq. (27) and (28) into (26), ting over 9s and defining:

2-D (CB) 2-D(/ ')

fop ov =b0V, v0, 1, 2,

CTV Fv/ 2 rPR2 V2

p R/11

there results 7r

P C Do coswbj boo cOtOs + bop snlvn ] sin6 s d95 (29)

Performing the indicated integration and rearranging terms,

_ . b floe bol boo o, + bo

CTV 08 oo00 2 2ib0 1  -1b v (oob-1 -o-oV+1 (30)
TV p82 2 4 VL. =~ 2 o-v=2

Eq. (30) represents the shroud thrust due to shroud vorticity.

The shroud axial force due to thickness is considered next. An equation for the cle-

mental force similar to Eq. (26) is derived starting with Eq. (6), page 471 of Ref. 10.

This equation gives the force on a body in the presence of external singularities in
terms of the strengths of the singularities and the velocity at the singularities due to

the body. Appendix 11.3, starting with this equation derives an equivalent equation
for the force on the source-sink distribution representing the body in terms of the

velocities at the body due to the external singularities. This equation, illustrated in

Fig. 23, has the form

dFs = 2 7rPR 2 U(Xs)ft(Xs) dXs  (31)

where U(X s ) is the axial velocity at the source element ft(Rs) d~s due to all the

singularities external to the body, i.e. the axial velocities due to the centerbody and

propeller wake. ft(xs) is the strength of the source-sink distribution, and is related

to the derivative of the thickness form. The axial velocity U Xs) Is represented by an
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Nth order polynomial through the axial velocities along the shroud reference cylinder,

which are available from the shroud pressure distribution calculation. The source-
sink distribution is represented by the existing polynomial used in the T.A.R. method.
(See Ref. 3.) Thus

s CB (32)
CB n o

/

tft (xs) a 0 n-1

V O -X. n=l

where the ans- are known in terms of the shroud thickness form. Substituting Eq. (32)
and (33) into Eq. (31) and defining:

CTS - F s /2 7rp Rp Vo2

the thrust coefficient due to thickness becomes,
N

Integrating Eq. (34) and rearranging terms, the expression for thrust due to
thickness becomes,

/1 2 n,!q0Xn1n+1+
I2C' ) naoA Zn l--+

0n"-l1---1

where n-i+1/2

z E n  

n c ( - 1 ) 2

n: (n-i-1l/2)

and nCi are the binomial coefficients. The total shroud thrust coefficient is given
by the sum of Eq. (30) and (35).

The thrust computed in this manner depends on tie product of the distribution strength

and a perturbation velocity. Both of thcse quantities, because of the linearized theory,
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are considered accurate only to first order. Multiplying these two first order quanti-
ties results in a small second order quantity. The accuracy of the thrust coefficients,
which is based on such second order quantities, is, therefore questionable, unless
the propeller loading is light, and shroud camber and thickness are small. This is
verified in a later section where comparisons with test data are made. Due to this
accuracy question an alternate approach to the shroud thrust problem based on mo-
mentum concepts was pursued.

6.3.3 Shroud Thrust Based on Momentum Theorem Using Propeller Circulation (Method 2).

Ref. 11, chapter I presents an expression for the forces on a control volume enclosing

an arbitrary body. For the steady, axisymmetric case, this expression reduces to
the integration of velocity and pressure over the surfaces of the volume. By choosing
a volume as shown in Fig. 24, with all its surfaces far removed from the shroud, the
surface integration requires a knowledge of the flow field at great distances from the
shroud. In Fig. 24, the contrcl surface is located at distances far enough away from
the shroud to insure that the velocity everywhere but in the wake approaches Vo and
the pressure everywhere on the surface including the wake approaches p, . The radius
of the wake and the velocity profile in the wake at the control surface are unknown.
Since the theory is linearized and all perturbation velocities are assumed small com-
pared to Vo, it follows that the propeller wake distortion from the shroud to down-
stream infinity should also be small. Consistent with this observation is the assump-
tion that the circulation distribution in the far wake be a scaled version of the pro-
peller circulation distribution. The scaling is included to allow for the small amount
of wake contraction or expansion caused by the shroud. Having specified the circula-
tion distribution in the wake, the wake velocity field can be obtained, and application
of continuity between the propeller disk and far wake then permits the wake radius to

be defined. In this manner, the complete velocity and pressure field over the surface
of the control volume has been specified, and the system thrust (shroud plus propeller)
can be obtained by application of the momentum theorem to the control surface. The
details of the derivation are contained in Appendix 11.4, but the final equation allow-
ing for the presence of a centerbody, is given below,

I

1~2 2' l"p JSto t

--- 4 +16d

Ct ot 2( 21 Va ( (
°

-P V 02 0

where
t1

jp=f r Ujp d(- Average Velocity In Wake
Vo  j Vo  2 Vo 2

o
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ii 1

Va - Vo Vo U/ d" =AverageVel. in

V0  1 (R pb)2 R0b Propeller plane

and

us  = axial velocity at propeller plane due to shroud

Ujp = axial velocity at propeller plane due to propeller wake

Uceb = axial yelocity at propeller plane due to centerbody

Ujp. =axial velocity in wake due to propeller wake = 2Ujp

6 p Ujpoo Ujp006" = jP - Vo - deviation from average velocity
Vo V0  YO

The first term represents the contribution to the thrust due to the average velocity,
whereas the second represents a correction due to deviations from the average. The
velocity Ujp due to the propeller wake is related to the propeller circulation by the
following: (see Appendix 11.4, Eq. (15),

BF(r;,j.~~~Ujp.o B "(.i
V0  2

V o0 2 7r V o2
2V0

and r j/Rp the ratio of wake radius to propeller radius is obtained from continuity as
and

+ 2

RJeb) Va/Vo

The propellcr cireuilation distribution, shroud and centerbo'(y induced velocities are
known from the T. A.R. solution so the right s ide of Eq. (36) can be evaluated for the
total thrust coefficient. This equation has been incorporated into the program, but
due to the assumption that the wake circulation distribution can be scaled from the

i propeller ciroulation, which depends on the condition that U<<Vo, this equation is
expected to be valid only in the forward flight regime. This technique for computing
shroud inviscid thrust is called Method 2.
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6.3.4 Shroud Thrust Based on Momentum Theorem Using Propeller Thrust Coefficient
(Method 3)

If only average velocities are considered, it is possible to obtain an expression for

shroud thrust that is valid in the forward as well as static regime. The only limi-

tation then is the accuracy with which the average velocities can be computed.
This approach is utilized in Ref. 12 and is analogous to the momentum result dis-
cussed above. In fact, Eq. (36) reduces to the equation in Ref. 12 if dp = o, i.e. if
only average velocities are considered. Thus, for this special case

[ 1R \2 1 V
CT =4 - Va (37)

tot [\Rp J VoVo

where Va/Vo represents the average velocity in the plane of the propeller and
Ujp/Vo is 1/2 the average velocity in the far wake. Two approaches are available
for the calculation of Uj p/Vo. The first utilizes the propeller circulation distribution

to define the average velocity. It is equivalent.to Method 2 with 6 p= o and is not

considered further. An alternate approach is to relate Ujp/Vo to the propeller
thrust coefficient in the manner ou"-Aned in Ref. 12. Consider a control volume
surrounding the propeller disk. Assuming average values for velocity and
pressure, application of the momentum theorem to this control volume leads to
the following expression for propeller thrust.

TPROP = (P2-Pl.) Ap (38)

where

P2 = the pressure just downstream of the disk,.

P, = the pressure upstream,

Ap = the propeller area = 7(Rp2 - Rcb 2)

Reb = contorbody radius

Applying Bernoulli's equation from the downstream side of the disk to the wake at
infinity, assuming that the static pressure in the ultimate wake is p , and denoting
the slipstream or wake velocity by Vj, there results

1 --2 1 2

P2 + 7 PVa =Poo +- P Vj (39)

where Va is the average axial velocity at the propeller disk.

Application from the upstream side of the disk to upstream infinity yields
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2 2

P, + 2 p Va = pP + P Vo (40)

Subtracting Eq. (40) from Eq. (39),

P 2 -P 1 =- - ( kv _-V, (40a)

Substituting into Eq. (38) and rearranging terms, the propeller thrust coefficient
becomes 2

C Tprop = 1 1 R b

CTprop = Tp Vo 2 ) 2 ]L] Rp2
2

solving for j in terms of CTprop

Vo ( _
V1 Rp2/

Finally substituting Eq. (41) into Eq. (37) and noting that

V-
'j Uj00+1=2 1p+I

Vo  Vo  Vo

the total thrust coefficient becomes

2 -/Rcb 2 Va . + (Tprop (42)to t L2)

where aV, -niCrro re known from the T. A.R.soution C mtngtehrt

in this fashion is referred to as Method 3.
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6.3.5 Evaluation of the Three Methods for Computing Shroud Thrust

Three methods for computing inviscid thrust have been described. The first, based
on detailed integration of the forces acting on the shroud singularities, results in the
integration of second order expressions of questionable accuracy for the shroud
thickness, camber and propeller loadings typical of this report. The second and third
are based on momentum concepts, which require specification of the velocity field in
the plane of the propeller and in the wake at infinity. The second accounts for the

details of the velocity distribution, which is expressed in te/tms of the propeller cir-
cula tion distribution, requiring the assumption of negligible wake distortion; this lim-
its its applicability to the higher forward speeds. The last based on average veloci-
ties expresses the jet velocity in terms of the propeller thrust coefficient by an addi-
tional application of the momentum theorem to the propeller disk, and is valid for all
flight regimes. Its only limitation rests on the accuracy with which CT propeller and
Va/Vo are computed by the T.A.R. theory.

Due to the questionable accuracy of Method 1, the detailed integration method, com-
parison of the thrust coefficients computed by the three methods for a representative
Mach number of 0.3 and the 1.1 area ratio shroud was made. The results, including the
effects of drag, are shown in Fig. 25. Estimates of shroud drag are based on Eq., (53),
which is discussed in the following section. The Method 1 net thrust coefficients are seen
to be much lower than test data and the predictions of Methods 2 and 3. This trend is
observed for the full range of Mach numbers and substantiates the theoretical misgivings
discussed above. In light of these findings, Method 1 is dismissed from further consid-
eration. Discussion of the two remaining methods is reserved for paragraph 7.4.4.

6.4 SHROUD DRAG PREDICTION

6.4.1 Introduction

Two methods of estimating shroud drag have been derived. The first treats the outer

and Inner surfaces as flat plates whose free stream velocities are Vo and the propeller

phine vlocity respectively. The second again treats the surfaces as flat plates, but

accounts for the pressure gradients along these surfaces.

6.4. 2 Shrond I)rag - No Pressure Gradient

It is aSsumed that flat plate friction can )e used to ubtain a reasonable estimate of

viscous drag on the shroud. The friction force is a product of the dynamic pressure,
wetted area, and friction coefficient. On the external surface this is

FDe = qo 2 7r RC Cfe (43)

On the internal surface, the velocity is not the free stream, but is increased due to
the propeller. The velocity just in front of the propeller can be taken as representa-

tive, so that the hiternal drag is:
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6.3. 5 Evaluation of the Three Methods for Com.puting Shroud Thrust

Three methods for computing inviscid thrust have been described. The first, based
on-detailed integration of the forces acting on the shroud singularities, results in the
integration of second order expressions of questionable accuracy for the shroud
thickness, camber and propeller loadings typical of this report. The second and third
are based on momentum concepts, which require specification of the velocity field in
the plane of the propeller and in the wake at infinity. The second accounts for the
details of the velocity distribution, which is expressed in terms of the propeller cir-
culation distribution, requiring the assumption of negligible wake distortion; this lim-
its its applicability to the higher forward speeds. The last based on average veloci-
ties expresses the jet velocity in terms of the propeller thrust coefficient by an addi-
tional application of the momentum theorem to the propeller disk, and is valid for all
flight regimes. Its only limitation rests on the accuracy with which CT propeller and
Va/Vo are computed by the T.A.R. theory.

Due to the questionable accuracy of Method 1, the detailed integration method, com-
parison of the thrust coefficients computed by the three methods for a representative
Mach number of 0.3 and the 1.1 area ratio shroud was made. The results, including the
effects of drag, are shown in Fig. 25. Estimates of shroud drag are based on Eq.. (53),
which is discussed in the following section. The Method 1 net thrust coefficients are seen
to be much lower than test data and the predictions of Methods 2 and 3. This trend is
observed for the full range of Mach numbers and substantiates the theoretical misgivings
discussedabove. In light of these findings, Method 1 is dismissed from further consid-
eration. Discussion of the two remaining methods is reserved for paragraph 7.4.4.

6.4 SHROUD DRAG PREDICTION

6.4.1 Introduction

Two methods of estimating shroud drag have been derived. The first treats the outer

and Inner surfaces as flat plates whose free stream velocities are Vo and the propeller

planic velocity res)cctively. The second again treats the surfaces as flat plates, but

accounts Ior the pressure gradients along these surfaces.

6. 4. 2 Shroud I)rag - No Pressure Gradient

It is assumed that flat plate friction can be used to obtain a reaSonai)le estimate ol
viscous drag on the shroud. The friction force is a product of the dynamic pressure,
wetted area, and friction coefficient. On the external surface this is

FDe = qo 27rRC Cfe (43)

On the internal surface, the velocity is not the free stream. but is increased due to
the propeller. The velocity just in front of the propeller can be taken as representa-
tive, so that the internal drag is:
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Fji qa C2 T R Cfi (.14)
where

q.-, --1/2 P V

If it is assumned that the boundary layer flow is turbulent inside and out (or that the
transition length is small), the value of skin friction for a smooth flat plate can be
US ed, i. 0.

Cf = .074/Re 2  (45)

where
VC

Re  --- (46)

Defining

Reo = VoC and Re2 VaC
v V

Adding Eq. (43) and (44) and substituting in Eq. (45) and (46), the friction drag force
becomes

FD = I/2 7r DCp Vo2  Va 2 ]074 (47)
.2 Re2Reo 2

An equation relating the velocity in front of the propeller Va and the free stream
velocity Vo is needed. Eq. (40a) relates the pressure jump across the disk P2-Pi
to the dynamic pressure in the far wake qj, i. e.

P2 - PI qj - qo (48)

Using Eq. (38) to eliminate the pressure jump P2 - P1 , there results

- q= Tprop/A (49)

Rearranging Eq. (49)

2 2 2T
v =V po p (50)

By continuity:

Va Aj
-= (51)

Vj Ap
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So that:

___A,_2 _ (52)
PAp Vo2 2T

i = prop

The friction drag coefficient becomes, noting that CT pp
prop p V

CFFD _(.074)(4)X 1 + A (531

CD+22 2 + CTpro7  (53)j1/2 pVo2Ap 12Reo' 2 P

Eq. (53) relates the total drag coefficient of the shroud to the shroud geometry,
Reynolds number, area ratio and propeller thrust coefficient subject to the assump-
tion of flat plate drag for the inner and outer surfaces.

6.4.3 Shroud Drag - With Pressure Gradient

The second approach for obtaining shroud drag accounts for the shroud pressure dis-
tribution. The drag force on a duct is a function of the boundary layer, which depends
strongly on the pressure gradient along the wall. This drag can be estimated by as-
suming that the duct is a thin cylinder with unseparated turbulent boundary layers on
the inner and outer surfaces.

Neglecting the laminar portion of the boundary layer, and assuming large Reynolds
numbers, Ref. 13 gives the momentum thickness of the boundary layer as

0 t ( 3 10 dx (54)

where C is the shroud chord, u is the local velocity at the edge of the boundary layer,
Vo is the free stream velocity, x is the nondimensional axial distance, 0 t is the mo-
mentun thickness, and Cf is the flat plate drag coefficient when u = Vo .

As in Ref. 14, the velocity distribution is taken to be linear, with a value of
u = uo at x = o and u = Vo at x = 1, where uo = maximum velocity on
shroud surface; thus

u 1 ° u °
T x - (55)
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6.4.3 (Continued)

Ref. 13 relates the drag coefficient to the momentum thickness at the trailing edge,

C FD 219t" (56)CD q orDC C

where D is the diameter of the duct reference cylinder, qo is the free stream dyna-
mic pressure, PV0

2  , FD is the drag force, and 0t is the momentum thickness
2

at the trailing edge of the duct.

Putting Eq. (55) into Eq. (54), 2nd the resulting equation into Eq. (56) the drag co-
efficient in terms of the velocity uo and the flat plate drag coefficient becomes

3 (V_)(57)
, J

CD 13 Cf

V0

The pressure coefficient is defined as follows:C =1/2 P V2 so

po u0 V2 (58)

where P, is the free stream pressure and p the local pressure. Putting Eq.

(58) into (57) the drag coefficient becomes in terms of the shroud pressure coefficient:

D 3 [(1-CPO) 13/6_ 6/7CD 1 C(59)
f 13 ( v/ 1-Cpo -1)

The flat plate drag coefficient, using the 1/7 power profile approximation for the
turbulent boundary layer velocity profile, is

cf Z- .oT4i11eo2 (0)

I ttig I,:(. (60) into (59) the r(i"11, CO TIcielit Iecomes
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6.4.3 (Continued)

.07 [ 13/6 6/7

CD .074 13 (1-Cpo)  1 (61)

Converting CD as defined in Eq. (59) to a drag coefficient based on propeller area
instead, leads to

FlI) 4 A (
CDF 1/2pVo 2Ap= CD (62)

Applying the conversion Eq. (62) to (61), there results,

13/6
4X (0.074) 3 1 (1-Cpo) 1 (63)

% p7 Re;2 13 (17; -1)

The total shroud drag coefficient is obtained by applying Eq. (63) to the upper and
lower surfaces of the shroud and adding the results.

In the limit, as CpO- o, Eq. (63) should reduce to the drag coefficient for one side
of a flat plate, i. e. the first term on the right hand side of Eq. (53). This is verified
by taking the limit of Eq. (63), i.e.,

lir (.074) (4) X
CPo- o CDF = 12Red2

6.4.4 Shroud Drag Evaluation

The two methods of estimating shroud (rag were evaluated in conjunction with Methods
2 and 3 for computing the shroud inviscid thrust. Comparisons of the resulting net
thrusts with those from the test program showed that neither drag method gave con-
sistently superior agreement. The first metbnd, based on the flat plate friction drag
estimate, was therefore chosen for the program because of its simpler form. The
other method, accounting for the effcIs Of pressure gradient, is included for com-
pleteness and for consideration in future efforts on the subject of shroud drag.
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6.5 THRUST COEFFICIENT NOMENCLATURE

In paragraphs 6.3 and 6.4 the thrust and drag coefficients have been normalized by use
of the free stream velocity. In practical propeller applications, these coefficients
are defined in terms of tip speed, i.e.

C THRUST V_-
T i'LT ' nD

where
n = propeller rotation speed - rps

D = propeller diameter - ft.

P = density - pounds sec 2/ft 4

Vo = velocity in feet per second

The conversions are given in Eq. (64) where the prime signifies the nomenclature of
paragraphs 6.3 and 6.4.

CT = CT' 7riJ2  J = 7TJo (64)
8

In the following discussion, unless otherwise noted, the propeller definition of thrust
coefficient CT and advance ratio J will be used.

6.6 COMPUTER PROGRAM

6.6.1 Introduction

Basically, the computer program permits the calculation of shroud performance and
shroud surface pressure coefficient distribution. The calculations can be made for
the cases of (1) defined shroud and propeller geometry, (2) defined shroud geometry
and propeller circulation, or (3) shroud alone.

The procedure has been programmed in FORTRAN IV for the Univac 1108 in three
separate computer decks. Hamilton Standard Deck H193 permits the computations
requiring as some of its input certain shroud thickness and camber data generated
by Deck H194 and centerbody data generated by Deck H060. The detailed instructions
for input, as well as sample cases of input and the corresponding output are presented
in Volume II. Volume II also includes the FORTRAN IV listings of the three com-

puter programs and brief flow charts showing how the various subroutines are used.

Hamilton Standard Deck H193 is discussed in some detail below.
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6.6.2 Hamilton Standard Computer Deck H193

6.6. 2a General Description

The computational procedure as previously defined in paragraph 6.1 through 6.,5 has
been programmed in FORTRAN IV. For a given shroud and propeller geometry or
circulation, the calculations consist of defining the propeller circulation by obtaining
the following velocity diagram at the propeller plane.

dL

dFI
V

27rrn

A velocity increment AV due to the shroud and centerbody is assumed. The iterative
process described in paragraph 6.2.4 is then used in conjunction with the Goldstein pro-
peller theory, two-dimensional airfoil data, and the corresponding iterative process in
establishing the final sectional induced angles (.), profile angles of attack (t), and
AV. The iterative process on AV is considered converged when subsequent values

of AV are within . 2% of each other. The iterative process i th respect to the Gold-
stcin propeller theory is assumed converged whena and flare so defined that the oper-
ating CL = f( ct ) from the two-dimensional airfoil data and the operating CL = f(fl)
from the Goldstein relationship agree within a tolerance of 0. 004. In the case of the
shroud alone, the calculations do not require the iterative processes.

Two integration techniques are used in the program. The GaLuss 1.0 )oint integration
method is use(I with respect to the integration of propeller thrust and power deriva-
tives. Hamilton Standard has found this technique gives very good accuracy and since
it uses only top points, minimizes computer running time. Simpson's integration rule
is used for integrations along the shroud and centerbody. Eighty-one intervals were
selected since adding more intervals changes the integrated values by less than 0.05%.

S2-D)
As was discussed in paragraph 6.1.2, the number of elements in the matrix Ibho0 I
and the power of the [P1 matrix used in defining (boy) must be defined so that conver-
gence is obtained. For the range of computations that were made for comparisons of
calculations and tests, it was not .d that the first three terms are the most significant
and it was found that seven terms in total would be within required tolerance.

Because of the complexity of the T. A. It. theory, considerable effort was undertaken

to be certain that tie theory had been correctly programmed. Therefore, before
changes were made to the basic T. A. It. theory, comparisons were made with the
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6. 6. 2a (Continued),

Hamilton Standard computer program and sample cases in Ref. 1, 2, 3 and 9.
These included comparisons of net average pressure distributions, the various com-
ponents of (bo2-D), (bop) and net thrust. The comparisons were made for shroud
alone and for shroud plus a propeller circulation. The good agreement with these
T. A. R. sample cases gave further assurance that the theory had been correctly pro-
grammed.

Furthermore, the computer program has been coded in such a manner that changes
ban be readily incorporated. Therefore, for example, if it is desirable to incorpor-
ate some airfoil data other than the family included at present, a subroutine for the
required airfoil family can be substituted. Similarly, as improvements are made
to any portion of the computational procedure, for example, the computation of net
thrust coefficient, It can be readily incorporated.

I

The computations are limited to 0.25<X< 0.998, 0.75< /1 < 0.998, and J > 0.

6.6. 2b Inputs for Computer Program

The input requirements as defined on Fig. 26 are categorized with respect to (1)
operating condition, (2) shroud data, (3) propeller data and (4) centerbody data.

Each operating condition is defined by a given advance ratio (J), free stream Mac.
number (M), and propeller blade angle (03/4).

The shroud is defined by the overall parameters of shroud diameter,X, Xp, and P
as well as shroud thickness coefficients and 2-D shroud camber Glauert coefficients.
Area ratio and shroud location beyond which the Riegels correction does not apply
are also included. Furthermore, locations along the shroud for which shroud surface
pressure coefficients will be computed must be included as part of the input.

The propeller is defined by number of blades, diameter, propeller hub to diameter
ratio, and blade sectional properties of thickness, width, pitch, and camber for the
10 Gauss stations.

The centerbody is included as input in the form of axial velocities induced by the
centorbody in the propeller plane and on the shroud reference cylinder. The radial
velocities induced along the shroud reference cylinder in ternis of Glauort coefficients
are also included. These data are obtained from Hamilton Standard Deck H060.

6. 6. 2c Outputs from Computer Program

Performance results are presented in terms of the nondimensional power coefficient
Cp, and thrust coefficient, CT. The CTnet (shroud + propeller) and the breakdown
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INPUT REQUIREMENTS

I. OPERATING CONDITION

J, 0 3/4, M.

II. SHROUD DATA

A) k:Xp, A , SHROUD DIAMETER

B) SHROUD h/b COEFFICIENTS AND 2-D SHROUD CAMBER GLAUERT

COEFFICIENTS (HS DECK H194)
C) AREA RATIO
D) RIEGELS FACTOR LIMIT
E) LOCATIONS ALONG SHROUD FOR WHICH SHROUD SURFACE PRESSURE

COEFFICIENTS WILL BE COMPUTED.

III. PROPELLER DATA

A) NUMBER OF BLADES
B) PROPELLER DIAMETER
C) HUB DiAMETER TO PROPELLER DIAMETER RATIO
D) BLADE SECTIONAL CHARACTERISTICS X, t/b, b/D, DES CLAO

OR PROPELLER CIRCULATION.

IV. CENTERBODY DATA (HAMILTON STANDARD DECK H060)

A) RADIAL VELOCITIES ALONG SHROUD SURFACE EXPRESSED AS
GLAUERT COEFFICIENTS

B) AXIAL VELOCITIES INDUCED BY CENTERBODY IN THE PLANE OF
PROPELLER

C) AXIAL VELOCITIES INDUCED BY THE CENTERBODY ON THE SHROUD
SURFACE

FIGURE 26.
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6. 6. 2c (Continued)

to CT propeller, CT shroud and shroud CD (drag coefficient) are computed. For
computations, based on shroud alone, only the shroud drag is calculated.

The shroud surface velocity ratio (ratio of velocity at shroud surface to free stream
velocity) and pressure coefficients are computed for specified points along the shroud.
The following components which define the velocity distributions are listed to permit
a better understanding of how each component contributes to the velocity. These com-
ponents do not include the effect of the Riegels correction, although the final inner
and outer surface velocities are corrected. The velocity components are Induced
by the following.

1. Shroud vorticity distribution (discontinuous part) due to the local shroud
vortex strength

2. Shroud vorticity distribution (continuous) plus shroud thickness (3-dimen-
sional effect) due to shroud vortex distribution, or equivalently, the ef-
fective camber and shroud thickness.

3. Shroud thickness (2-dimensional effect) due to the local source sink
distribution.

4. The propeller wake contribution due to propeller circulation.

5. The velocity induced by the centerbody.

Furthermore, to better understand what is happening, additional data is computed in
the form of slipstream contraction (ratio of slipstream diameter to propeller diameter),
ratio of average slipstream velocity to free stream velocity, and ratio of the average
duct velocity at the propeller plane to free stream velocity. The duct velocity in-
eludes the summation of the velocities induced by shroud, propeller and centerbody.

Various components of the velocity content along the propeller plane are calculated.
The noadimensional velocity induced by the shroud vorticity and source-sink distri-
bution, propeller wake, and centerbody are listed for ten points in the specified pro-
pellee plane. 'l'olal and assuined velocity ratios are included to show the convergenc
of the velocity Iterative process. Also Included are the propeller induced velocity
inlerlcUeflts Ivt.,(I on (o llsteini ani inoiiciinLi n )rol)ellcr theoL'ics. nhe lomecr is
u5('d in l)lOeller ) e lo rmaace comlmataLi ns and (he, latter in the caIculation of net
thrust. l"iurtheCinorC, for the given shroud aiil pl'ol)elc" colfiguration, the sectional
swirl angles are computed. Swirl angle is defined as the angle lormied by the leaving
absolute velocity and the axially induced velocity.

To permit a thorough examination of the computational procedure, the follo% ing print
options are available. Blade elemental printouts permit the examination of th.2 sectional
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6. 6. 2c (Continued)

aerodynamic components required to compute the thrust and power derivatives.
Another option permits the displa v of the varlous matrices and characteristic func-
tions used in the analytical procedure. The final option permits the examinationwof
the contents of the 2-dimensional Glauert coefficient b02"D, i.e., the contributions
due to the centerbody, shroud thickness, propeller wake and shroud camber. Fig. 27
summarizes the printout option. It should be noted that the use of these options is
predicated on a complete understanding of the mathematics of the theory.

Sample printouts are included in Fig. 28a for the shroud and propeller defined, Fig.
28b for the shroud and propeller circulation, and Fig. 28c for the shroud alone.

6. 6. 2d Computer Running Time

On the Univac 1108, twenty-five operating points are computed per minute with
Hamilton Standard Deck H193. The pertinent information from Decks H194 and H060
are obtained in nominal running times and need to be generated only once for each
shroud configuration. With such fast running time, this computer program can be
readily used to investigate many variations of the shroud, propeller and centerbody
variables.

As noted in the introduction, detailed instructions are included in Volume II, as well
as the pertinent FORTRAN IV information.
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OPTIONAL PRINTOUTS

I. BLADE ELEMENTAL PRINTOUT

0, O, 6., 4o, CL, CD/CL, DCp/DX, DCT/DX, M/MCRIT

I1. MATRICES AND CHARACTERISTICS FUNCTION

P (K,L) - CURVATURE COEFFICIENTS (REF. 2,P 24- 27)

M (K,L) - MATRIX USED IN DEFINING SHROUD THICKNESS EFFECT
ON 2-DIMENSIONAL GLAUERT COEFFICIENTS (REF. 3, P 39-42)

S (K,L) MATRIX USED IN DEFINING SHROUD VORTICITY -
DISTRIBUTION (CONTINUOUS PART) CONTRIBUTION TO
SHROUD PRESSURE DISTRIBUTION (REF. 3, P 63- 66)

T (K,L) -TRANSPOSED MATRIX USED IN DEFINING SHROUD THICKNESS
(3-DIMENSIONAL PART) CONTRIBUTION TO SHROUD SURFACE
PRESSURE (REF 3, P 57- 60)

CHI (J,NU) - INTEGRAL OF THE CHARACTERISTICS FUNCTIONS USED j
IN DEFINING THE PROPELLER EFFECT ON THE 2-
DIMENSIONAL GLAUERT COEFFICIENTS (VOLUME I
APPENDIX 11. 7)

VELC -CHARACTERISTICS FUNCTIONS USED IN DEFINING

VELOCITIES INDUCED BY THE SHROUD VORTICITY AT THE
PROPELLER PLANE (VOLUME I, APPENDIX 11. 6)

VELH -CHARACTERISTICS FUNCTIONS USED IN DEFINING
VELOCITIES INDUCED BY SHROUD THICKNESS AT THE
PROPELLER PLANE (VOLUME I, APPENDIX 11. 6)

Ill. 2-DIMENSIONAL GLAUERT COEFFICIENTS CONTENT

SHROUD CAMBER AND THICKNESS

PROPELLER CIRCULATION

CENTERBODY

FIGURE 27.
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SAMPLE CASE FOR DEFINED SHROUD AND PR

HS COMPUTER DECK H93
HS SHROUDED PROPELLER PERFORMANCE

HAMILTON STANDARD
WINDSOR LOCKS#CONNe

1967
1 ROSE WOROBEL 10/13/67
2 SAMPLE INPUT FOR HS DECK H193

**** PROPELLER CHARACTERISTICS ****

3 B1-3WT

QOOF BLADES= 3. AF= 168.0
DIAMETER FT.; 2o4940 CLI= ,4000

HUB X 0 .2500

X= *9903 .9493 *8797 *7875 .6807 .5693 ,4626 ea
T/B= e0320 90420 90570 90770 ,1040 .1380 .1770 A
B/D: .1192 s1165 .1125 .1065 .1000 o0928 ,0862 j

DES CL= .1760 .3390 o360 s4910 o980 o*700 .*170 A
DELTA 0= -5*20 -*70 -3,50 -1,25 3.30 9o40 16.30 2

**** SHROUD CHARACTERISTICS ****

SHROUD NO* = 1, LAMBDA= 96070
XP-BAR=-,1023 MU = .9110

SHROUD INNER SURFACE DIAMETER FT.: 2.5000
SHROUD REFERENCE DIAMETER FT.= 2.73?7

RIEGELS FACTOR LIMIT z &1875
AREA RATIO = 1.1000

T/C CONTRIBUTION TO VORTICITY (THICKNESS COEFFo)= .5270 o2506
SLOPE OF MEAN CAMBER LINE (6LAUERT COEFF,): -.5100 *4742

**** CENTERBODY CHARACTERISTICS ****

CONTRIBUTION TO VORTICITY (BLAUERT COEFF.)= -0930 -.0338 .0J

**** CALCULATIONS ARE BASED ON BOTH PROPELLER AND SHROUD CHARACTERISTIC

*** IN THE SUBSC2UENIT MATRICES THE SUBSCRIPT L REFERS TO THE ROW AND

P(KtL) DATA LAMBDA= .6070
.09336 .00000 e04670 .00000 -.00002 000000 *
,18672 o11179 f00000 -.01857 00000 o00013 *
.03608 ,00000 902459 .00000 -.00618 000000 ,
-.00009 -00619 .ocoo .00911 00000 -.00297 *1

A
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OMPUTER DECK H493
OP.L.ER PERFORMANCE PROGRAM
ELTON STANDARD
SOV LOCKSiCONN,S 1967

.5693 .4626 .3700 e3005 .2600

.1380 *1770 ,2140 .2450 .2650

.0928 ,0862 .0800 00760 .0735

.4700 ,49.70 93510 *2940 s2570
9*40 tao.30 23.10 28,70 32.30

.5270 .2506 -7o4200 30*5670 -64.6900 73.8190 -43.2900 10.2380
-t5100 .4742 .5894 .3748 92473 e0951 -,0456

.,0930 -@0338 .0142 -*0007 -.0009 .0000 .0000 -.0000

HROUO CHARACTERISTICS 
****

p,1

FERS TO THE ROW AND THE SUBSCRIPT K REFERS TO THE COLUMN ****

02 00000 .00000
00 .00013 .00000
18 .0'0000 .00003
00 ".00297 ,00000

FIGURE 28A.
(SHEET I OF 5)
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-.00025 .00000 -.00309 .00000 .00472 0000,
-.00000 900003 .00000 -.00178 .00000 .0021
.00000 .00000 .00001 .00000 -.00116 .0001

M(K#L) MATRIX LAMBDA= .6070
.77577 o42779 -.00000 .05230 -.00000 .00910 -

-.24243 -.00000 .08170 -.00000 *01588 -.00000
.:02740 .06795 -.00000 -.00439 -.00000 -.00125 -

-.00531 -.00000 -.01624 -.00000 -.00079 -.00000
.00278 900628 -.00000 .00430 -.00000 .00042

-.00142 -.00000 -.00220 -.00000 -.00119 -.00000,
*00076 .00181 -.00000 .00080 -.00000 .00029 -

-900051 -.00000 -.00075 -.00000 -.00028 -.00000 -

S(KeL) DATA LAMBDA= .6070
1.34181 .67251 -.00000 -.00157 -.00000 -00001
-.63085 -.00000 -.31730 -.00000 .00193 -.0001
.00633 .15863 -.00000 -.15604 -.00000 .000,
.00374 -.00000 .10401 -.00000 -.10232 -.0001
.00008 -.00051 -.00000 *07676 -.00000 -.076:

-.00006 -.00000 -.00019 -.00000 .06103 -0001
-.00001 -.00000 -.00000 -.00012 -.00000 .050

TT(KeL) DATA LAMBDA= .6070
.02255 .00000 -.00781 .00000 -.00185 .0001
.07153 .04805 .00000 o00417 .00000 .000
.01847 .00000 -.00641 .00000 -#00114 .0001

-.00088 -.00320 *00000 .00040 .00000 -.000,
-.00002 000000 -.00002 *00000 .00001 .0001
:.00009 -.00012 *00000 -00.012 900000 .0001
.00000 .00000 .00001 ,00000 .00003 .0001

**** IN THE SUBSEQUENT MATRIX THE SUBSCRIPT J REFERS TO THE ROl

CHI(JeNU) INTEGRAL DATA LAMBDA= .607 MU= .911 XPB: -e10230
.368797 -.098303 .043780 -.024433

-*070586 .024980 -.011631 .006482
962295 -.071615 *037169 -.022480
.043807 -o025107 o014595 -.009236

".042131 .024995 -*016077 .010445
",023317 .016541 -"011489 s007988
.011405 -.009108 *005867 -.004348

RAD.STA* VELC(NU) AS NU GOES FROM 0 TO 7
.9903 8.55389 5.62314 1.28969 -2.85074 -1963158 1.48951
.9493 8,00916 5.09583 1.08626 -2,29601 -1.21526 1.06647
.8797 7.07703 4.29719 .80696 -1.59809 -#73S98 .61247
.7875 5*87233 3,40182 .53993 -99936 -.37977 .30118
.6807 4.58011 2.55458 .33623 -.58796 -.17831 .13677
#5f93 3,39057 1.84241 .20297 -34065 -.08217 s06184
.4626 2.41270 1,28978 ,12265 -20034 -,03940 .02936
.3700 1.68862 o89415 ,07656 -.12301 -,02059 ,01527
.3005 121798 .64189 .05152 -.08208 -.01262 900930
.2600 .97338 .51153' *03952 -#06279 -*00916 .00684

RAD*STA* VELH(NU) AS NU GOES FROM 0 TO 7
.9903 1.60236 -.31274 -.83864 .06054 -.13508 .01172
.9493 1.40222 -.29308 -72793 .04479 -#12216 .00960
.8797 1.10414 -*25748 -*57043 .02503 -.10112 .00637
.7875 .78950 -.20963 -.41068 .00916 -.07669 ,00319
.6807 .52496 -.15820 -927832 ,00023 -.05414 ,00101

_ _ _
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.00*72 00000 -.00176

.60000 .00292 .00000
-.00116 .00000 .'00199

000 .00910 -.00000 -.00100
1588 -#00000 *00058 -;00000
000 -.00125 -.00000 .00089
079 -.00000 .00003 -.00000
000 .00042 -.00000 -.00012
119- -.00000 r.00003 -.00000
000 .00029 -600000 -.00014
028 -000000 -.00001 -.00000

--.00000 -.00001 -.00000
,00193 -.00000 -.00000

-.00000 .00051 -.00000
-.10232 .00000 .00019
-.00000 -*07637 -.00000
.06103 -.00000 -.06095

-00000 ,05079 -.00000

-.00185 .00000 -.00041
00000 .00093 ,00000

-0011 .00000 *00011
400000 -.00000 .00000
,00001 ,00000 .00001
,00000 ,00001 ,00000
.00003 400000 -.00002

61 REFERS TO THE ROW AND THE SUBSCRIPT NU REFERS TO THE COLUMN ***

s911 XPB= -s10230
80 -@02433 *015646 -.010819 s007970
31 .006482 -,00410 .002873 -.00208069 -.022480 9014742 -,01097 .007697
95 -.009236 .006222 -.00451 6003320
77 .01045 -.007399 .005321 -#004095
89 s007988 -.005775 .001285 -,003307
7 -.00438 .003083 -@002396 ,001816

0O 7
16315i 1.48951 1,56171 -961415

1121526 1.06647 1.03086 -@39701
"o73698 961247 *51115 ",19412

-.37977 ,30118 ,20465 -*0783
.*17831 .13677 .07286 -.02874-. o8217 .061811 ,02566 -.010o18

-*039 0 02936 .00969 -. 00408
",02059 :01527 .00423 -*0018
!-*01262 .00930 900210 -00100
-*00916 ,00684 .00175 -.00075

07
-,13508 .01172 -s03064 ,00276
-.12216 00960 -.02816 .00235
-.10112 .00637 -,02385 .00166
-.07669 ,00319 -901852 ,00091
-*0541 .00101 -01333 .00035

FIGURE 28A.
(SHEET 2 OF 5)
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*5693 o3360' -.1124b8 -.18255 -*00312 -.0365
94626 *21298 -o07698 -.11832 -.00357 -.0241
.3700 .13749 -.05222 -.07763 -00299 -0160
.3005 .09433 -,03698 -.05390 -.00236 -.011
,2600 .07j69 -,02932 -.04232 -.00196 ".0081

.2
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5 -40312 -.03654 -.00005 -.00913 o00006
2 -.00357 -.02413 -.00039 -.00608, -.00006
3' --.00299 -.*01601 -.00042 -.00406 -.00008
0' -.*00236 -.01119 -.00036 -.00285 -.00007
2 -,00196 -#00881 -.00031 -.00225 -.00007

FIGURE 28A.
(SHEET 3 OF 5)
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SAMPLE CASE FOR DEFiNED.SHROUD All

*** PERFORMANCE *4*

CONDITION J= 1.5087 'THETA..3/=42.000.MN= .3053 CP=

NET THRUST COEFF.(SHROUD + PROPELLER) = o2102
SHROUD THRUST COEFFICIENT = -.0148SHROUD FRICTION DRAG COEFFICIENT = .0216

PROPELLER THRUST COEFFICIENT = .2250

SLIPSTREAM CONTRACTION= s95

RATIO OF AVERAGE DUCT VEL./FREE STREAM VEL.= 1.0957

RATIO OF AVERAGE SLIPSTREAM VEL./FREE STREAM VEL.= 1*1311

**** INDUCED VELOCITY CONTENT **

PROP* X 0 .9903 e9493 .8797 .7875 .6807
CENTERBODY DV/VO= -@0084 -*0086 -.0089 -.0092 -.0092
SHROUD T/C DV/V0= .1316 .1255 ,1152 .1023 .0891
VORTICITY DV/VOZ -.0712 -.0680 -.0646 -.0621 -.0605
TOTAL V/VO= 1.0520 1,0489 1.0417 1,0310 1.0194
ASSUMED V/VO= 1.0514 1.0484 1,0414 1.0308 1.0196
PROPoIND.6 VP/V: .1940 .1662 .1363 91074 .0873
PROP*IND.M. VP/V= *0740 .0880 ,0888 .0813 *G738
SWIRL ANGLE 3.6107 4.2513 4.3162 4*0163 3.7084

**** GLAUERT COEFFICIENTS CONTENT ****

SHROUD SHROUD PROP. CENTER TOTAL
NU CAMBER T/C CIRC. -BODY 2-0 3-0
-0 -.5100 -.0770 .0814 -.0930 -3676 -.3719
1 .4742 -.0245 -.0176 -.0338 .4719 .4449
2 .5894 .0001 .0467 .0142 *6501 .6509
3 .3748 -,0009 *0152 -0007 .3911 .3917
4 s2473 -0081 -.0156 -.0009 .2470 .2463
5 *0951 -,0054 -0103 .0000 ;0956 *0952
6 -.0456 -*0055 90054 .0000 -*0293 -.0296

**** SHROUD SURFACE VELOCITIES AND PRESSURE COEFFICIENTS

--------- VELOCITY COMPONENTS ---------
3-D THICK*+

SHROUD X VORT*UIS. 2-D THICK. VORT.CONT* PROP WAKE
0
.00010 9,27479 .19128 -.03645 .01551
.00500 1,16724 .37954 -&03476 .01560
.0125G .60794 .43680 -.03238 '901573
002500 .29398 .47207 -.02889l 001596
.05000 .05831 .47070 -*02350 .01641

At



HSER 4776
Volume I

D'SHROUD AND PROPELLER GEOMETRY

Mr- *3'053,CP= .4292

.0216

.2250

190957

1VELsz 1.1317

.o7875 o6807 .5693 o4626 .3700 .3005 92600
*0092 -s0092 -.0084 -.0067 -o0039 -.0005 .0021
.1023 .0891 .0780 .0698 90644 .0613 .0599
.90621 -.0605 -.0592 -.0581 -.0573 -.0568 -.0566
1#0310 1.0194 1.0104 1.0050 1,0032 1.0040 1.0055
1.0308 1.0196 1.0107 1.0054 1.0036 1.0044 1.0059
.o1074 .0873 .0685 .0497 .0340 .0231 .0174

.01 *0738 .0628 .0495 .0365 o0269 .0216
4.0163 3.7084 3.2153 2.5809 199296 1.4356 1.1585

3-D
76 -.3719

,719 o4449
501 .6509I
11 .3917
470 .2463
956 .0952
Z93 -.0296

COEFFICIENTS,****

TS ---------
o+OUTER SURFACE INNER SURFACE

T. PROP WAKE CS EFF. V/VINF CPRESS V/VINF CPRESS
-.8568 .2659

3645 .01551 -.00530 .9492 .0990 -o7374 94563
3476 #01560 -.00530 103318 -.7737 .0992 .9902
323V~ .01573 -.00530 1.4280 -1.0393 .5697 .6755
889 901596 -#00530 1.4596 -1.1303 99686 90619
350 901641 -.00520 1.4248 -1.0300 1.3152 -.7299

FIGURE 28A.
(SHEET 4 OF 5)
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Standard A@

SAMPLE CASE FOR DEFINED SHROUD AN4

.07500 -,03427 .43353 -.01987 s01686 -A

.10000 -,07184 .38498 -.01761 s01731 -A
,15000 -*07519 .28996 -.01601 .01814 -,
,20000 -.04174 .21918 -.01672 :01876 -
.25000 -900226 ,17644 -.01840 .01885 ,*30000 ,03024 ,15560 -.02027 .01771 ".

.40000 .06032 s14512 -.02316 .00406 "
,50000 ,05587 ,13347 -902466 -,01566 -"
:60000 ,04725 .10324 -*02552 -,01891 -,.70000 .05566 .06518 -.02618 - 401785 -.
.80000 .07476 .03178 -.02604 -01607
.90000 ,06859 -.01239 -.02383 -.01433 ,.
.95000 ,04324 -06159 -.02171 -*01352

**** BLADE ELEMENTAL PRINTOUT ***

J: 1.5087 THETA 3/4z 42.00 FREE STREAM MNo= ,3053

X= .9903 s9493 .8797 s7875 e6807 .5693
THETA= 36.80 37.30 38.50 40.75 45.30 51.40
ALPHA: 4*07 4.28 ,40 4s66 5,86 17e45
PHI= 32,73 33.02 34.10 36.09 3944 4395
BETA= 5.72 5.08 4.48 3.93 3.71 3.50PHI 0= 27.02 27.94 29,62 32.15 35.73 4045
CL3= ,5699 .7147 .7875 ,8193 .8684 .8844

CD/CL= .0446 *0296 .0182 .0162 .0172 .0189
DCP/DX= 1.1067 1,1997 1.0619 ,8285 .6241 e4288
DCT/DX= e5027 .5806 @5459 .4442 s3427 .2394

SECTEFF,= .6853 ,7301 .7756 ,8088 .8283 s8424
SECT.MN= ,7032 ,6804 .6413 .5899 s5319 ,4747
M/MCRIT= s7738 .7989 .7889 ,7587 ,7193 ,7086

21i
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ED SHROUD AND PROPELLER GEOMETRY

.*01686 -.00520 1.3605 -.8510 1.4275 -1.0379

.01731 -.00530 1.2981 -.6852 1.4408 -1.0759

.01814 -.00540 1.2111 -o4667 1.3614 -.8535

.,01876 -.00570 .1it38 -.3777 ,2573 -.5807

.01885 -.00610 1.1685 -e3655 1e1731 -3760
901771 -00660 1.1767 -3845 1.1162 -.2459
.00406 -.00780 1.1785 -.3890 1.0579 -.1192

-.01566 -.00910 1.1399 -2994 1.0282 -.0572
-.01891 -01050 1.0956 -.2002 1.0011 -.0021
-.01785 -*01170 1.0651 -s1345 e9538 a0903

*.01607 -.01250 10519 -61065 .9024 .1857
-01433 -.01280 1o0052 -.0105 .8681 .2465
-.01352 -.01270 .9337 .1282 .8472 .2822

,303

o6807 .5693 .4626 .3700 93005 .2600
45.30 51.40 58.30 65.10 70.70 74.30
-5,86 7.45 8.93 9.92 10.36 10.62

* 39,44 4395 49.37 55.18 60.34 63.68
3.71 3.50 3114 2o69 2.26 1.97

35.73 40*45 4623 52,49 58.08 61.71
.8684 .8844 .8351 .7282 .6048 .5215
.0172 .0189 .0277 .0400 .0577 .0747
.6241 .4288 .2682 .1558 .0930 .0647
.3427 e2394 .1497 ".0855 .0488 .0321
.8283 .8424 .8421 .8278 .7920 .7480
.5319 .4747 .4245 ,3859 .3610 .3485
.7193 .7086 ,719A .7050 e6082 .6085

FIGURE 28A.
(SHEET 5 OF 5)
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Standard A@

SAMPLE CASE FOR DEFINED7SHROUD AND F

HS COMPUTER DECK H193,

HS SHROUDED PROPELLER PERFORMAN
HAMILTON STANDARD
WINDSOR LOCKSrCONN9

1967
1 ROSE WOROBEL 10/13/67
2 GIVEN PROPELLER CIRCULATION

**** PROPELLER CHARACTERISTICS **

3 81-3WT

NO.OF BLADES= 3. AF= 168.0
DIAMETER FT.= 2,4940 CLI= .4000

HUB X ,2500

X= 09903 99493 s8797 o7875 .6807 .5693 .4626
CIRCULATION= .1489 ,1769 .1788 e1632 .1484 .1262 *0995

S*** SHROUD CHARACTERISTICS ***

SHROUD NO* = 1i LAMBDA= ,6070
XP-BAR=-1023 MU : ,9110

SHROUD INNER SURFACE DIAMETER FT,= 2@5000
SHROUD REFERENCE DIAMETER FT,= 2,7377

RIEGE4S FACTOR LIMIT = ,1875
AREA RATIO = 1,1000

T/C CONTRIBUTION TO VORTICITY (THICKNESS COEFF*) =  ,5270 25061

SLOPE OF MEAN CAMBER LINE (GLAUERT COEFF*): -e5100 94742T

**** CENTERBODY CHARACTERISTICS ****

CONTRIBUTION TO VORTICITY (GLAUERT COEFF@)= -.0930 -,0338

S*** CALCULATIONS ARE BASED ON SHROUD CHARACTERISTICS AND GIVEN PRO1

S., Ik

. . . .. j°°



HSER 4776

Volume I

D-SHROUD AND PROPELLER CIRCULATION

COPUTER DECK H193
OPEI.ER-PERFORMANCE PRO6RAM
AMILTON STANDARD
NOSOR LOCKSvCONN*

1967-

7 5693 o4626 .3700 *3005 .2600

4 .1262 .0995 .0734 .0540 .0435

.5270 .2506 -7.94200 30,567e -64.6900 73.8190 -43.2900 10.2380
-.5100 .4742 .5894 .3748 .2473 .0951 -.0456

-.0930 -.0338 .0142 -.0007 -.0009 .0000 .0000 -.0000

IgS A- GIVEN PROPELLER CIRCULATION ****

FIGURE 28B.
(SHEET I OF 3)
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SAMPLE-CASE FOR DEFNED-SHROUD;AN

*** PERFORMANCE **

CONDITION J: 1.5087 MN: *3053

NET THRUST COEFF,(SHROUD + PROPELLER) #2102
SHROUD THRUST COEFFICIENT -90148

SHROUD FRICTION DRAG COEFFICIENT .0216
PROPELLER THRUST COEFFICIENT = 2250

SLIPSTREAM CONTRACTION= .95

RATIO OF AVERAGE DUCT VEL./FREE STREAM VEL.= 1.0957

RATIO OF AVERAGE SLIPSTREAM VEL./FREE STREAM VEL.= 1.1317

**** INDUCED VELOCITY CONTENT **

PROP. X = o9903 .9493 .8797 .7875 .6807
CENTERBODY DV/VO= -.0084 -.0086 -.0089 -90092 -.0092
SHROUD T/C DV/VO= .1316 .1255 .1152 .1023 .0891
VORTICITY DV/VO= -.0712 -.0680 -0646 -.062). -90605 -
TOTAL V/VO= 1.0520 1,0489 1,0417 1,0309 1.0194

S*** GLAUERT COEFFICIENTS CONTENT ****

SHROUD SHROUD PROP* CENTER TOTAL
NU CAMBER T/C CIRC* -BODY 2-D 3-D
-0 -.5100 -.0770 .0814 -.0930 -.3676 -.3719
1 .4742 -.0245 -.0176 -.0338 .4719 .4449
2 .5894 .0001 .0466 .0142 .6501 .6509
3 .37468 -0009 .0152 -s0007 .3911 13917
4 .2473 -.0081 -.0156 w*0009 .2470 .2463
5 .0951 -.0054 -.0103 *0000 .0956 90952
6 -60456 -%0055 ,0054 .0000 -.0293 -.0296

S*** SHROUD SURFACE VELOCITIES AND PRESSURE COEFFiNCIENTS **

--------- VELOCITY COMPONENTS --------
3-0 THICKo+

SHROUD X VORT.DIS. 2-D THICK. VORT.CONT PROP WAKE
.0
000010 9.27720 919128 -.03645 *01550
.00500 1.16730 .37954 -*03477 o01559
.01250 *60797 s43680 _03238 .01572
.02500 .29401 .47207 -*02889 901595-
.05000 .05833 *47070 -.02350 901640
.07500 -.03426 943353 -.01987 901685
.10000 -07182 .38498 .01762 901730
915000 -.07518 ,28996 .01602 .01813
.20000 -.04173 .21910 -s01672 .01875

A.
'I1



HSER 4776

Volume I
EDg'SHROUD AND PROPELLER CIRCULATION

.2102
-. 0148
.0216
i2250

1.: 10957

AM VEL.: 1.1317

.6807 .5693 .4626 .3700 .3005 .2600
s-.0092 -.0092 -.0084 -.0067 -.0039 -.0005 .0021
.1023 .0891 .0780 .0698 .0644 .0613 .0599
-.0621 -.0605 -.0592 -.0582 -.0573 -.0568 -.0566
1.0309 1.0194 1.0104 1.0050 1.0032 1.0040 1.0055

AL
3"D

676 w.3719
719 .4449
501 .6509
911 .3917
70 o2463
956 ,0952
93 -.0296

COEFFICIENTS **

q + OUTER SURFACE INNER SURFACE
T. PROP WAKE CB EFF. V/VINF CPRESS V/VINF CPRESS

-o8568 o2659
645 .01550 -.00530 .9492 .0990 -.7374 .4562
477 .01559 -.00530 1.3318 -.7738 .0991 .9902
238 .01572 -.00530 1.4281 -1.0394 .5696 .6755
889 .01595 -.00530 1.4596 -1.1304 .9685 .0619
350 .01640 -.00520 1.4248 -1.0301 1.3152 -.7298
987 .01605 -.00520 1.3605 -.8510 1.4275 -1.0378
762 .01730 -.00530 1.2982 -.6852 1.4408 -1.0758
602 .01813 -.00540 1.2111 -.4667 1.3614 -.8534
672 .01875 -.00570 1.1738 -.3777 1.2572 -.5807

FIGURE 288.
(SHEET 2 OF 3)
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SAMPLE CASE FOR DEFINED SHROUD AN

.25000 -.00225 .1764#4 -.01841 o01884

.30000 .03024 .15560 -,02028 o01770 .

.40000 *06032 .14512 -.02317 o00406
e50000 .05587 .13347 -.02466 -.01566
.60000 *04725 o10"24 -.02552 -.01890 -*1
.70000 .05566 e06518 -.02618 -.01784 -.
.80000 *07476 .03178 -.02604 -,01607
e90000 e06859 -.01239 -o02383 -401432 *.1
o95000 .04324 -.06159 -,02171 -.01351 -
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iNED SHROUD AND PROPELLER CIRCULATION

e01884 -.00610 1.1685 -.3655 1.1730 -.3760
.01770 -.00660 1.1767 -.3845 1.1162 -.2459
.00406 -.00780 1.1785 -.3890 1.0579 -.1191

-.01566 -.00910 1.1399 -.2994 1.0282 -.0572
-.01890 -.01050 1.0956 -.2003 1.0011 -.0021
--.01784 -.01170 1.0651 -.1345 .9538 .0903
-.01607 -.01250 1.0519 -.1066 .9024 .1856
-. 01432 -.01280 1.0053 -.0105 .8681 .2465
-01351 -.01270 s9337 .1281 .8472 .2822

FIGURE 28B.
(SHEET 3 OF 3)

85 8it



Hamilton U 00LT0AIMCAFT COATKON

Standard A ®

SAMPLE CASE FOR SHROI.

HS COMPUTER DECK
HS SHROUDED PROPELLER PERFO

HAMILTON STANDA
WINDSOR LOCKS#C-

1967
1 ROSE WOROBEL 10/13/67
2 SHROUD ALONE
3 81

**** SHROUD CHARACTERISTICS ***

SHROUD NO. 1s LAMBDA= ,6070
XP-BAR=-1023 NU : ,9132

SHROUD INNER SURFACE DIAMETER FT.= 2.5000
SHROUD REFERENCE DIAMETER FT, 2.7377

RIEGELS FACTOR LIMIT = s1875
AREA RATIO z 1,1000

CENTERBODY X IN SPECIFIED PLANE = @2500

T/C CONTRIBUTION TO VORTICITY (THICKNESS COEFF*)= 95270 ,1
SLOPE OF MEAN CAMBER LINE (GLAUERT COEFF,)z -.5100 04

**** CENTERBODY CHARACTERISTICS ***

CONTRIBUTION TO VORTICITY (6LAUERT COEFF.)= -,0930 *03-

**** CALCULATIONS ARE BASED ON THE SHROUD ALONE ****

4
A , _ __ _

Ii
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- E FORSHROUD ALONE

:HS COMPUTER DECK H193
-'PROPELLER PERFORMANCE PROGRAM
-HAMILTON STANDARD
WINDSOR LOCKSCONN.

1967

,): 5270 ,2506 -7,4200 30.5670 -64.6900 73.8190 -43.2900 10.2380
*): -.5100 *4742 .5894 93748 .2473 .0951 -.0456

-.0930 -.0338 .0142 -*0007 -.0009 .0000 .0000 -.0000

FIGURE 28C.
(SHEET I OF 3)
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SAMPLE CASE FOR - SHRO0
*** PERFORMANCE ***

CONDITION MN2 .3053

SHROUD FRICTION DRAG COEFFICIENT = .0079

SLIPSTREAM CONTRACTION= e96

RATIO OF AVERAGE DUCT VEL./FREE STREAM VEL.= ,9825

* ** INDUCED VELOCITY CONTENT ***

PROP. X - *9903 .9493 .8797 @7875 .6807 .5693CENTERBODY DV/VO: .0084 -.0086 -.0089 -.0092 -*0092 -*0084SHROUD T/C oV/Vo: ,1319 .1258 .1155 *1025 .0893 .0781VORTICITY DV/VO: -91181 -.1145 -.1102 ",1065 -.1032 -,1004TOTAL V/VO= 1,0054 1.0027 .9964 .9869 .9769 .9693

**** GLAUERT COEFFIC:ENTS CONTENT ****

SHROUD SHROUD PROP. CENTER TOTAL
NU CAMBER T/C CIRC, -BODY 2-D 3-D-0 -.5100 -,0770 .0000 -.0930 -.4490 -.46441 .4742 -.0245 .0000 -.0338 *4895 *44562 .5894 .0001 .0000 .0142 .6034 .5994
3 .3748 -,0009 .0000 -,0007 o3759 v37634 .2473 -.0081 .0000 -.0009 .2626 .26225 s0951 -*0054 .0000 .0000 *1059 *10556 -*0456 -,0055 90000 .0000 -0347 -,0350

*** SHiOUo SURFACE VELOCITIES AND PRESSURE COEFFICIENTS ****

......... VELOCITY COMPONENTS .........
3-D THICK,+SHROUD X VORT.DIS 2-D THICK. VORT.CONT, PROP WAKE CS EFF

00
000010 11:58799 s19128 "#06053 .00000 -.001900500 1.49560 .37954 ".05881 *00000 -.00.01250 .81715 *43680 -.05636 .00000 -.00#02500 044391 .47207 -*05276 .00000 -.00,05000 e16751 o47070 ",04719 ,00000 -.00.07500 905778 ,43353 -04337 ,00000 ",00.10000 901049 e38498 ".04091 .00000 -.001.15000 -.00410 .28996 -*03879 .00000 -.00*20000 *02185 ,21918 -03879 .00000 *00.25000 .05443 .17644 -&03958 .00000 -.00'.30000 *07956 ,15560 -@04037 .00000 ".00s40000 s09309 .14512 "*04072 .00000 .00.50000 ,07239 ,13347 -*03955 .00000 -.00.60000 *05223 s10324 -*03802 .00000 -.01
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SE:FOR SHROUD ALONE V e

25

.6807 .5693 .4696 .3700 .3005 .2600
.'@0792 -@0084 -.0067 -*0039 -.0005 .0021
.*o'3' .0781 .0699 06145 .0613 .0599

-'1032 -s1004 -.4980. -*0963 -.0951 -0946
.9769 .9693 .9652 .9643 *9657 *9675

644
1456
99
763
622
055
350

CIENTS **

OUTER SURFACE INNER SURFACE
OP WAKE CO EFF. V/VINF CPRESS V/VINF CPRESS

-1.0697 -.14143
.00000 -*00530 1.1557 -.3356 -.9511 *0954
i00000 -.00530 1.4843 -1.2030 -.0951 .9910 :
.00000 -.00530 1.5477 -1.3954 .3939 o8448
• 0000 -.00530 1.5515 -1.*4071 .8101 .3437
.00000 -.00520 1.4897 -1.2192 1.1750 -.3806
(00000 -.00520 1.4111 -.9911 1.2980 -.6049
.00000 -.00530 1.3396 -.7945 1.3187 -.7391
900000 -.00540 1.2413 -95407 1.2494 -.5611
.00000 -.00570 1.1965 -.4317 1.1528 -.3290
.00000 -*00610 1.1852 -e4047 1.0763 -.1585
.00000 -00660 1.1882 -4118 1.0291 -.0590
.00000 -900780 1.1897 -#4154 1.0035 -.0070
.00000 -.00910 1.1572 -.3391 1.0124 -.0250
.00000 -*01050 1.1070 -.2253 1.0025 -90050

FIGURE 28C.
(SHEET 2 OF 3)
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SAMPLE CASE FOR SHROUbI

.70000 e05633 906518 -.03679 .00000 -.011
*80000 .07651 .03178 -.03523 000000 -012
.90000 .07068 -.01239 -.03188 .00000 -.012
,95000 .04343 -.06159 -.02921 .00000 -.012

Li
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- ASE FOR SHROUD ALONE

.00000 -.01170 1.0730 -.1514 .9604 .0777

.000000 !.01250 1.0606 -.1248 .9075 .1764
i00000 -.01280 1.0136 -.0274 .8723 .2392
;00000 -*01270- 99399 .1165 .8531 .2723

FIGURE 28C,
(SHEET 3 OF 3)
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7.0 COMPARISONS OF CALCULATIONS AND TESTS

7.1 INTRODUCTION

The T. A.R. theory, modified as discussed in the previous sections is now evaluated
by comparing its predicted performance and pressure distributions with the test re-
sults of Phase I (Ref. 15). The discussion includes pertinent information on the test
program and some comparisons of calculations and test for the isolated and shrouded
propeller configurations. The shrouded propeller comparisons are made fora, Mach
number range of. 05 to. 5 for a variety of shroud and propeller geometries. Compar-
isons of propeller thrust, net thrust, shroud surface pressure distribution, pro-
peller thrust derivatives, and axial velocities in the prope ller1lanerare made, The
net thrust evaluations are based on Methods 2 and 3 (paragraphs 6.3.3 and 6.3.4)
for calculating inviscid thrust and the drag method using zero pressure gradient
(paragraph 6.4.2). A discussion is also included with respect to the centerbody effect
on performance.

7.2 DISCUSSION OF TEST DATA

A comprehensive wind tunnel test was conducted in the United Aircraft Research Lab-
oratory's 18 foot low speed and 8 foot high speed tunnel facilities. A parametric
series of 2. 5 foot diameter shrouded propeller models were tested from near static
velocities to a Mach number of 0.5 over a range of propeller power loadings and tip
speeds. These models incorporated interchangeable shroud lips, exit sections and
propellers so that the effect of a shape change in either shroud, propeller, or shroud-
propeller combination could be examined.

The shroud shape variables investigated consisted of lip shape, area ratio, chord
length, exterior shape, vanes, and propeller position within the shroud. The propel-
ler shape variables included blade planform, number of blades, and tip clearance.
One propeller was selected to investigate all the shroud variables and similarly, one
shroud was selected to investigate all the propeller variables.

The shroud and propeller configurations are defined in Fig. 29 through 32. Fig.
29 shows the shroud shapes tested as well as the parameter variations. The parame-
ters are defined as follows.

Area Ratio (A4 /A2) Open Area at Shroud Exit
Open Area at Propeller Plane

Shroud Lip Shape = (Shroud Leading Edge Diameter) .-
Propeller Diameter

Shroud e h( =Shroud Reference Cylinder Length
LShroud Reference Diameter

89
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7.'2 (Continued)

Propeller Position (X) DistanceofPropeller from Shroud Mid-chord
Shroud Reference Cylinder Length

Fig. 30a defines the shroud thicki-ess ratio distribution and Fig. 30b the shroud camber
line slope distribution. As can be seen from Fig. 30a and 30b, the changes in area
ratio resulted in simultaneous variations of the camber line and thickness forms.
Fig. 31 shows the propeller blades tested and Fig. 32a and 32b the model blade see-
tional characteristics.

The wind tunnel test was undertaken as Phase I of contract NOw-64-0707-d. The re-
sults-are reported in Ref. 15. Performance changes due to the various parameters
are presented. Since some of the parameter presentation nomenclature of Phase I
was changed in Phase III, the nomenclature for Phases I and III are included in Fig. 33
for correlation between this report and Ref. 15. The parameters for shroud length,
-propeller position and tip clearance have been changed to be compatible with the compu-
tational procedure. Since some of the Phase II parameters have been previously de-
fined, the list will be completed with the following definitions:

Propeller Tip Clearance (p) Propeller Diameter

Shroud Reference Diameter

Propeller Planform _ Blade Tip Chord
Propeller Diameter

The Phase I definitions can be oLtained from Ref. 15 if required.

7.3 PERFORMANCE COMPARISONS - ISOLATED PROPELLER

As part of the Phase I test program, a limited amount of test data was obtained for
the isolated pr-opeller for Mach numbers of. 05. .1 and .2. Fig. 3,4 iiows fthe-com-
parison of calculations and tests for propeller thrust coefficients for the Mach
number rarge. The computations were made for the corresponding test power coef-
ficients also shown in Fig. 34. The excellent agreement is another example of the
favorable comparisons of calculations and test obtained by using a computational
procedure based on the Goldstein propeller theory.

7.. I1'lEl"O)IMANCE COMPAISONS 5IiROUIDEI) 1PROPELIE

7. ,I. 1 n

Comparison of calculaions and Phase I test results have been made to establish the
validity of the computational procedure. Pertinent shroud and propeller parameters
required for the computations are listed in Fig. 35. The discussion is divided into
two categories. The first accounts for variations in performance due to what are

90
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HAMILTON STANDARD SHROUDED PROPELLER TEST: SHROUD SHAPES

NOTATION PARAMETER VARIATIONS

EXTERIOR SHAPE 0 ( n rr1
X1 no " "r>

SHROUD SHROUD -0I Z5 M "0
AREA LIP LENGTH z r z
RATIO SHAPE r P1 I-

B1 1.1 0.133 0.607 -0.1023 X

SB2 0.172

B 63 1.2

G B4 1.3

["(-..., B5 -0.2528

KZIIZIL B6~ x

B7 0.456

FIGURE 29.

91

I0



HSER 4776

Standlard p
Hamilton.... Vo. ..........

... ... ... ..... ... .. ... ...... ... ... .. ..
.. . . . . . . .. . . . . . . . . . . . . . .

.... ... ....... .. ....... ... ...
EEE ... I .... ..... .. -.... 1. .. . i Ii

.. . . . . ... .. . . . . . . .

f ~
... 0 ... C

V~ 'OU.I..SS.N...H.

...2. .



ESER 4776
Ham iton.. U Ao VlmI

L" AIRC*AI9 OPRTINV lm
Standar

....... .....
......

........ ... I ... . .

FE
M M MIT Rfl~i Eff

HEiH
LEI F

0ifif
Ei~i f~

H~IL 0~
-Ji.. ....... ... ..

. . . . . . ... .... . ...N. .. . . . . . .. t. ..

. .. .. ... ...

. . ..... ......... ... ..

... .. .. . .. 93 .. .. .. ..

... .... ...... .. .. ... ..



Hamiltn...,HSER 4776Hamilto Volume IStandard p

PROPELLER TEST BLADES

(A) (B(C D)

I v

FiGURE 31

~-L. I9I



Hamiltn., uHSER 4776
*OmNlto Volume I

p.p

Uu ...... .IIx.... .... 1 .... ... .

.... ....1............... .......... .......
w ...... 0

.... ... J...
..... .....

... .. ... ow..w
M 1 .17

........ .. .. ... ...
J ... .... x

. .. .. .. . . . .. ...., .I .

'~~7 N N N N c- 0 0

95



HSER 4776
Ham tto~~,~~ ~Volume I

Standard P

jI IdI

71I tI I 

II

- I P;;t fil 1 4,1

'II
96 Q

0.



HSER 4776
Hamilton.,,, U Volume I
Standard A@

NOMENCLATURE COORDINATION

PARAMETER PHASE I NOTATION PHASE III NOTATION

AREA RATIO A 4 /A 2
B1 -3WT 1.1

AREA RATIO B3 - 3WT 1.2 SAME AS PHASE I

B4 - 3WT 1.3

SHROUD LEADING EDGE DIAMETER_
SHROUD LIP PROPELLER DIAMETER ) SAME AS PHASE I
SHAPE BI-3WT .133

B2-3WT .172

SHROUD LENGTH B1 - 3NT .607
SHROUD LENGTH BI - 3NT .667 B7 - 3NT .456

B7 - 3NT .500

PROPELLER POSITION "p
POPELLE 81 - 3WT .40 B1 - 3WT -. 1Q23

B5 - 3WT .25 B5 - 3WT -. 2!28

TIP CLEARANCE

PROPELLER TIP B1 - 3R .00119 B1 - 3R .911
CLEARANCE B1 - 3R1/2M .00259 B1 - 3R1/2M .909

B1 - 3RM .00559 B1 - 3RM .903

(BLADE TIP CHORD

PROPELLER PROPELLER DIAMETERJ

PLANFORM B1 - 3NT .0949 SAME AS PHASE I
B1 - 3R .1077
B1 -3WT .1198

NUMBER OF BLADES
NUMBER OF B1 - 3NT 3 SAME AS PHASE I
BLADES B1 - 4NT 4

FIGURE 33.
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I 7.4.1 _ (Continued)

defined as primary parameters. The second accounts for variations due to secondary
parameters. It is interesting to note these catagories generally are associated withaerodynamic and geometric variables respectively. The primary parameters are:

1. Power coefficient, Cp
2. Advance ratio, J = f (Mach no. and tip speed)
3. Area ratio

The secondary parameters are:

1. External shroud shape
2. Lip shape
3. Shroud length
,4. Propeller position in shroud
5. Propeller planform
6. Number of blades
7. Tip clearance

7.4,. 2 Shr oud 'Pressure Distribution Comparisons

In this section, the effects of the primary parameters on shroud pressure distribution

will be evaluated. The changes due to changes of the secondary parameters are neg-
ligible. The primary parameters considered in the performance evaluation are power
coefficient, area ratio and Mach number, for a propeller rotative speed of 6000 RPM
(tip speed of 785 ft/sec). The pressure distribution comparisons will be made at

5500 RPM (tip speed of 720 ft/sec) since most of the pressure measurements were taken
at this speed. Comparisons of pressure distributions will account for Mach number
variation, power coefficient variation and area ratio variation, all for the 5500 RPM case.
In addition, the effect of a rotative speed change for a given Mach number, area ratio and
power coefficient will be investigated. The area ratio 1. 1 shroud will be used to evaluate
the effects of changes in power coefficient, rotative speed and Mach number. The varia-
tions due to area ratio will be based on the 1.1 and 1.3 area ratio shrouds. All the
pressure distributions discussed in this section have been corrected by application of
the Riegels factor.

7..I.2a Power Coefficient

The variation of pressure distribution due to changes in power coefficient for the 1.1
area ratio shroud is shown in Fig. 36a and 36b for a Mach number of .3. The M =
.5 case is similar and will not be discussed.

rwo interesting features are exhibited by both the theoretical curves and the test
data.
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7.4.2a (Continued)

I, 1. The effect of power coefficient is most pronounced near the leading edge,
with the higher power coefficient resulting in the more negative pressure
coefficient.

2. From the mid-chord station to the trailing edge there is no significant effect
of power coefficient, indicatinir the propeller influence on pressure in this
region is negligible.

lIrom these ieatures it can be concluded that the theory predicts the (,i'ect of the
propeller in a qualitative sense. The discrepancy between test and theory in the for-
ward half of the shroud is probably due to the errors in the calculated velocity distri-
bution along the shroud rel'erence cylinder for both the shroud and propeller. However,
for the downstream half of the shroud, where the propeller effect is negligible, dis-
crepancies between test and theory must be due to the shroud velocity field only. In
addition, the assumptions of the theory near the leading edge are violated, forcing the
use of the Riegels correction. Since this correction is based on an elliptic nose shape,
some of the deviations can be attributed to the nonelliptic nose shape of the shroud. In
the downstream region of the shroud where the theory is expected to be applicable, the
agreement is quite good.

7.4.2b Area Ratio

The area ratio variation Is shown for the 1.1 (BI) and 1.3 area ratio (B4) shrouds in
Fig. 4 and 5 for M =. 3 and tip speed = 720 ft/see. The test power coefficient is
.35 for the 1.1 area ratio and .352 for the 1.3. The theoretical curves are for the
range of Cp's indicated. The Cp effect discussed above is again observed. The area
ratio effect is qualitatively predicted by the theory with very good agreement for the
downstream portion of the shroud where the effect of propeller power coefficient Is
small. The effect in the leading edge region is qualitatively predicted, the discrep-
ancies being of the form discussed in the section above.

7.4. 2c Rotative Speed

In order to investigate the effect of rotative speed on performance, the test data for
the 1. 1 area ratio shroud at M =. 3 was cross plotted to yield the inner surface pres-
sure coefficient variation at two values of rotative speed for a constant power coef-
ficient. The rotative speeds correspond to J's of 1. 845 and 1. 455, both for a power
coefficient of . 235. Corresponding theoretical cases are compared to the test results
in Fig. 37. As was the case for the Cp variation, the effect of J on the pressure co-
efficient is neglibible from the mid-chord of the shroud to the trailing edge. The agree-
ment between test and theory Is very good In this region. In the vicinity of the lead-
Ing edge the theoretical method predicts a more negative pressure coefficient, but
the trend with J is correct. The discrbpancy can be due to the Inaccuracies inherent
in the theoretically predicted shroud velocity distribution near the leading edge and/
or inaccuracies in the propeller induced velocities.
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7.4. 2d Effect of Mach Number

In this paragraph the effect of Mach number on pressure distribution is investigated for
B1-3WT and B4-3WT with tip speed = 720 ft/sec. Varying the Mach number
at a constant rotative speed varies the effects of compressibility as well as the for-
ward flight speed, thereby varying the ratio of the perturbation velocity to free stream
velocity, U/Vo. At Mach numbers of. 3 or higher, the perturbation to free stream
velocity ratio is small, and the effect of Mach number change is primarily compres-
sibility. This aspect has been discussed in paragraph 6.2.3 where it was shown that the
pressure distributions are well predicted for both M = .3 and M = .5, i.e., see Fig.
4 through 7. Lowering the Mach number below about .3, on the other hand, has the
effect of increasing U/V o , whereas the compressibility changes become negligible.
It is this latter effect which is discussed in the following.

Fig. 38 and 39 show comparisons of theoretical and experimental inner surface pres-
sure distributions for the 1.1 and 1.3 area ratio shrouds at M =.05. In paragraph
6.2.5 three improvements to the theory were discussed; the use of J instead of
J', the use of the Goodman tip correction to the flow field of the propeller wake and

0,
the first order correction to the shroud camber line boundary condition. The effect
of these corrections is considered in the following for M =.05.

Both the B1-3WT and the B4-3WT comparisons show that the experimental pressure
coefficients are much more negative than the theoretically predicted ones. In addi-
tion, the various corrections did not improve the comparison. The Goodman tip cor-
rection had a negligible effect and is not shown.

The first order correction to the shroud camber line boundary condition had a very
small effect on the pressure distribution. This was caused by the shapes of the
shroud camber line correction and the shroud camber line slope. The first order
correction for the B1-3WT Is shown in Fig. 40. The corrected and uncorrected
shroud camber lines are shown in Fig. 41. The correction Is largest in magnitude

over the leading half of the shroud. The camber line slope, however, is such that
it is largest in the region 0. _<.5X < . 2. Thus, the significant change s in camber lineC - xslope occur near the leading edge of the shroud(0 : C: .1). T'is correction then mani-
fests itself as a significant alteration to the shroud vorticity distribution in the lead-
ing edge region (as shown in Fig. 42 for B1-3WT) where its effect on the pressure
coefficient is greatly diminished by application of the Riegels factor. The effect is

similar for the B4-3WT.

It is hard to ascertain whether the small effect noted above of the first order correc-
tion to shroud camber is uniquely related to the particular camber line slopes used
in this program. Should a camber line be used which exhibits large slopes in the
mid-chord region, the above conclusions could be changed. It is therefore recom-
mended that this correction be investigated whenever the program is used for cam-
ber lines which deviate significantly from those used in this report (shown in Fig.
301)). This is easily accomplished since the continuous axial velocity at the shroud
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7. 4.2d (Continued)

reference cylinder is available from the program print out. The procedure for deriv-
ing the correction is given in paragraph 6.2.5e,

Future efforts in improving the shrouded propeller prediction method should include
an evaluation of this correction for a range of camber lines which are likely to be met
in practice.

The largest changes were caused by the use of J'2 instead of J'o in Eq. (20). Un-
fortunately, use of the theoretically more accurate J'2 caused the pressure coefficient
to become less negative, thereby worsening the agreement between test and theory.
At first glance this would indicate that the propeller contribution to shroud pressure
distribution is being predicted incorrectly. However, at these low Mach numbers,
other portions of the theory are also questionable, for example, the method in which
the shroud thickness form is represented. To further investigate this effect, an
estimate of the actual shroud thickness form consistent with the specified source-
sink distribution was made for the M = 0.05 case. It will be recalled that th source-
sink distribulion was obtained from the specified shroud thickness form, subject to
the assumption thatU Z Z Vo. At M = 0.05, this is not the case. Invalidation of
this assumption but use of the source-sink distribution derived subject to this assump-
tion manifests itself in the use of a shroud thickness which deviates significantly from
the specified thickness. An estimate of this "utilized" shape or thickness form can
be made by subtracting Eq. (23b) from (23a) and foliowing an analysis which parallels
the derivation of the correction to the shroud camber line boundary condition contained
in paragraph 6.2. 5e. This analysis leads to a similar first order correction tc thA
boundary condition on thickness which is shown below:

VrD (65)
1 +

where VrD= the discontinuous portion of the radial velocity divided by Vo

Uc continuous portion of the axial velocity divided by Vo

slope or the thickness I'orm

In the forward flight regime, Uc/ Z 1, Eq. (65)reduces to the form used in the method,

i.e.,

t = VrD (66)

where VrD, being the discontinuous portion of the radial velocity, can be related
directly to the source-sink distribution representing shroud thickness. Returning

-11
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to Eq. (65), the discontinuous part of the radial velocity, even at the lower Mach

numbers, is known in terms of the shroud source-sink distribution, which is propor-
tional to t'act the actual, or inputted shroud thickness form. The t' on the left sideof Eq. (65) represents the shape actually utilized in the method, so

t utilized s u t'act fo r Uc) o f (67)

The utilized thickness form can be obtained from the actual form through the use of
Eq. (67) and the term (1 + De) , the shroud camber line boundary condition correction,
which is shown in Fig. 40 for the B1-3WT at M = 0.05.

The resulting utilized thickness form is shown in Fig. 43 along with the actual.
Large differences exist, which in part account for the differences in pressure distri-
butLn observed. Qualitatively, the utilized form has a smaller leading edge radius
anu thickness in the leading edge region, which leads to smaller velocities and more
positive pressure coefficients than actually exist. This is the effect exhibited by the
comparisons of test and theory. Thus, the way in which shroud thickness is accounted
for is invalid at the lower Mach numbers, and should be based on Eq. (65) instead of
(66).

The use of Eq. (65) instead of Eq. (66) greatly complicates the mathematical solution
of the problem. With Eq. (66), the discontinuous radial velocity V r D is directly
related to the source-sink distribution and therefore leads immediately to the specifi-cation of the source-sink strength as being proportional to the known thickness form.

Use of Eq. (65) to obtain the source-sink distribution on the other hand is much more
difficult. The source-sink distribution must now give rise to a distribution of V r D
along the shroud reference cylinder which when divided by (1 + tc), results in the
defined thickness form. In this case, there is no simple correlation between the
source-sink distribution and the thickness form. In fact, 'the appearance of (1 + Uc)
causes the source-sink distribution to depend not only on the thickness form, butalso on the shroud vorticity distribution and propeller load through the dependance ofUc on these variables.

Due to the complete change in the nature by which the shroud source-sink distribution
is calculated when Eq. (65) is considered, it was not possible to incorporate it intojI,
the prografn during this contract. It is recommended for consideration in future
efforts aimed at extension of the method to the static and low flight speed regime,
where the elfect Is most pronounced.

Tihe variations in perl'oimance due to the three corrections I'or the low Macti number
case Lised In Ihc above prcsstre distribution evaluation are summa/rized below lor the
B1-3WT and the B4-3WT:
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7.4. 2d (Continued)

B1-3WT B4-3WT

Operating Condition J = 0.218 J = 0.192
M = 0.0534 M = 0.0535

c3/4 = 250 =3/4 300

Correction C p C Tprop C p CTprop

J' 0.181 0.2087 0.2656 0.2378

Jf2 0.1956 0.2254 0.2872 0.2492

J'2 + Goodman

Tip Correction 0.2005 0. 2309 0. 2960 0.2563

+ Goodman

Tip Correction
+ First Order 0. 1995 0.2299 0.2972 0.2566
Correction to
Boundary Condition

Test 0.183 0.196 0.289 0.231

/

The effects of the various corrections are small. The use of J' 2 instead of J1 and

the Goodman tip correction result in the largest changes. The first order correction
to the boundary condition has a negligible effect, as it did for the pressure distribu-

Lion. The good agreement exhibited between test and theory is fortuitous. Choice of
a different operating point would have resulted in poorer agreement, as will be shown
by the comparisons in paragraph 7.4. 3 and Fig. 47.

7.4.2v Summary - Pressure Distribution Com,,arlson

These discussions indicate that for the higher Mach numbers, the pressure distribu-
tion along the shroud is well predicted by the theory except for the region near the
leading edge. The changes In pressure distribution due to changes in power coefficient,
area ratio and rotative speed are predicted by the theory. At a Mach number of 0. 05
the theory does not predict the pressure distributions, as might be expected, because
the perturbation velocity is of the order of the free stream velocity, thereby violating
the assumptions of the theory.
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7.4.3 Propeller Performance Comparisons

Comparisons of calculations and test results for propeller performance will be dis-
cussed in this section. Also included are propeller thrust derivation comparisons
as well as axial velocities in the propeller plane.

7. 4. 3a Primary Parameters

Fig. 44, 45 and 46 show the comparison of propeller thrust coefficient, CT props versus

power coefficient, Cp, for constant Mach numbers from 0. 02 to 0. 5 for area ratios
of 1. 1, 1.2, and 1.3. Good agreements are shown for Mach numbers greater than
or equal to 0.20 with deviations becoming greater with further reductions in Mach
number. This effect can be seen more clearly on Fig. 47 where the data has been
plotted as a function of Mach number for constant Cp for each area ratio.

To better understand what is happening, curves of computed J2 versus Cp were plotted
for the range of Mach numbers for area ratio of 1.1 and 1.3 (Fig. 48). J 2 is defined
as the average advance ratio at the propeller plane including the propeller induced
effects. With J (free stream advance ratio) also being included on the curve, it can
be seen that the lower the Mach number the larger percentage change from J 2 to J.
The T. A. R. theory is predicated on small changes between J and J 2. Consequently,
the accuracy diminishes as the Mach number is reduced.

In addition, as the Mach number varies from 0.05 to 0.0, the velocity in the propeller
plane will decrease and possibly give rise to a significant amount of wake distortion.
Consequently, the Goldstein theory will not properly define the propeller contribution.
The same situation has occurred with the free air propeller and considerable effort is
being expended by various concerns to properly define this region. The applicability
of the theory to the lower Mach numbers is further discussed in Section 8. 0.

The predictions of area ratio effect is better shown in Fig. 49 where CT is plotted
versus Cp for the three area ratios at 0. 3 Mach number and 785 ft/sec tip speed. It
can be seen that the area ratio effect is being well predicted with the area ratio of
1. 3 being off a bit more than the other two. This would be expected since Fig. 48
showed that the J2 for 1.3 area ratio deviated from J more than the 1.1 area ratio

J2. The area ratio variation with Mach number for a constant Cp is shown in Fig. 50.
Again, good agreements are shown for M >- 0.2. The trends are predicted at M = 0.1
although the magnitudes are off. For 0. 05 Mach number, neither trends nor magni-
tude are predicted.

The tip speed comparison was made at 0.3 Mach number for the range of test tip
sl)eeds. The results are plotted in Fig. 51 and show that the tip speed variation is
being well predicted.
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7.4.3a (Continued)

In summary, the prime factors are well predicted for Mach number- 0. 20. The
deviations in the lower Mach number range are due to deficiencies in the basic
theory. Since the propeller theory is also doubtful in the static region, it is recommended
that when a successful propeller static thrust theory is developed that it be included
in the computer program.

7.4.3b Secondary Parameters

The evaluation of the computational validity of the secondary effects are included in
Fig. 52 through 58. Propeller thrust coefficients, CT prop are plotted versus power co-
efficients, Cp for 0. 3 Mach Number and 785 ft/sec tip speeds for calculations and test.

Fig. 52 shows that test data predicts a slight difference in propeller performance for
the shroud external shape. Calculations, however, show the B6 shroud to have better
propeller performance than the BI shroud. The basic shroud (Bi) has a gradual

fairing of the outside surface starting from the 25% chordal position. The exterior of
the B6 shroud, on the other hand, was built with the camber side of a NACA Series

16 airfoil from the 50% chord position to the shroud trailing edge.

The effect of shroud lip shape is shown in Fig. 53. Tests show an average of a 2%
improvement in performance for BI shroud ever B2 shroud where B1 has the larger
leading edge thickness. Calculations predict a negligible change in performance for
the two shroud lip shapes.

Calculations and tests both predict at the lower Cp range that the long shroud is better
than the short shroud. However, calculations do not predict the crossover as indicated
at the higher Cp range. The data is summarized in Fig. 54.

The good agreement between calculations and test for the effect of propeller position
is shown in Fig. 55. Both show that the Lopeller performance is essentially the same
for propeller centerlines located at 40% (X) = -0. 1023) and 25%YO (X = -0. 2528) of the
shroud chord length back from the shroud leading edge.

The negligible effect of planform op propeller performance as predicted by test is
also shown to be so by calculations. The comparison is plotted in Fig. 56. These
propellers were wide tip trapezoidal (3WT), narrow tip trapezoidal (3NT), and rec-
tangular (3R) in planform.

The computed number of blades effect well matches test results in the lower Cp
range and slightly overestimates in the higher range as shown in Fig. 57.
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7.4.3b (Continued)
The effect of blade tip clearance -is shown in Fig. 58. Te6tS -ow that for the nominal

radial tip clearance of 0. 038" (3R), 0. 078" (3R 1/2M), and 0. 168"1 (3RM) correspon-
ding to p = 0. 911, 0. 909, and 0. 903 on the CT prop, Cp basis, the propeller performance
is within 1% of each other. Calculations show that the performance is essentially the
same. It should be noted that to get the true tip clearance effect for a given operating
condition, performance should be compared at different Cp's for each tip clearance
since the propeller diameters differ. However, since the calculations match test so
well, the tip clearance effect will also be well predicted for specific operating con-
ditions.

In summary, test data show that all of the secondary factors have small or no effects.
Calculations also essentially show small or no effects.

7.4. 3c Comparison of Axial Velocity Distributions

During the Phase I testing, axial velocity distributions were measured at a point located
0.24 chord lengths upstream of the propeller centerline. The computer program per-
mits only the computations of the velocity in the propeller plane. Therefore, the com-
parisons in Fig. 59 through 63 can be examined only for general trends and not neces-
sarily for magnitudes. Fig. 59 shows that area ratio difference is predicted over a
Mach number range. Tests and calculations both show that planform changes have a
small effect on axial velocity (Fig. 60). Number of blades also produce small .effects
as shown in Fig. 61. The axial velocity differential due to shroud length is well pre-
dicted as shown in Fig. 62. A variation with propeller speed is also indicated by
calculaticns as is shown in Fig. 63. Therefore, it can be concluded that axial velocity
differentials due to the various shroud and propeller singularities are being predicted.

7.4.3d Comparison of Propeller Thrust Derivatives

As was noted in the Phase I report (Ref. 16, Vohune I, Page XII-14), propeller thrust
and power distributions were obtained from shroud exit traverse probe measurements.
The integration of the thrust derivatives obtained in this manner gave thrust coeffi-
cients which agreed well with the force measurement values. A similar correlation
of the power data was found to be poor due to the direct dependence of dCp/dx on
measured swirl angles which have sizeable errors. Therefore, only comparisons
of the thrust derivatives were made with calculated values. Fig. 64 through 68 show
st,.0h comparisons for the basic configuration for a Mach number range of 0.05 to 0.5.
'rho good comparisons are further substantiation that the velocities are being pro-
perly predicted in the plare of the propeller. The somewhat greater deviation be-
tween test and calculations in the tip region with increase in Mach Number is proba-
bly duo to the measurements being made at the shroud exit where they inadvertantly
invlude boundary lager build up and erroneously reflect its effect back to the pro-
peller plane.
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7.4.3d (Continued)

In sumnmary, the good performance comparisons of calculations and tests for Mach
numbers 0. 20, thrust derivative comparisons and axial velocity comparisons all

confirm that the velocity flow field in the propeller plane is being well predicted.

7.4.4 Shroud Net Thrust Comparisons

The two methods chosen in paragraph 6.3 for the calculation of the shroud inviscid
thrust are considered. The shroud drag is computed by the flat plate method des-
cribed in paragraph 6. 4. 2 and Eq. (53). The net thrust coefficient CT net is
defined as the difference of the inviscid thrust and shroud drag. The two methods for
the inviscid drag calculation are listed below, for convenience:

Method 2 - Based on Momentum Theorem, jet velocity computed by
scaling propeller circulation distribution

Method 3 - Based on Momentum Theorem, jet velocity computed in terms
of" propeller thrust coefficient.

As discussed in paragraph 7. 4. 1, the CT net comparison is divided into the two following
categories.

A. Effects of primary parameters, i.e.,
1. Power coefficient
2. Area ratio
3. Mach number
4. RPM

B. Effects of secondary parameters, i.e.,
1. Tip clearance
2. Blade planform
3. Propeller location
4. Shroud chord/diameter ratio
5. Shroud lip shape
0. Number of blades

7.. .,a Primary Pa rameters

The primary parameters represent those variables which have a first order effect
on performance and are the more important.

The variation of net thrust coefficient with the primary parameters for the 1. 1, 1.2
and 1.3 area ratio shrouds is shown in Fig. 69, 70, and 71. Presented are plots of
CT net versus propeller power coefficient for the range of Mach numbers 0. 05 through 0. 5
All curves are for a constant propeller rotative speed so the Mach number variation
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7.4.4a (Continued)

is also equivalent to a J variation. Each figure contains 3 curves for each Mach
number. The solid line represents the experimental results, the short dashed lines
represent the momentum based on propeller thrust coefficient (Method 3) and the long
dashed lines, the momentum based on propeller circulation distribution (Method 2).
These curves lead to three primary conclusions:

1. The agreement between test and theory for either method is fair for the higher
Mach numbers.

2. At the lower Mach numbers, Method 3 is superior.

3. Both methods qualitatively predict the variation of CT net with Mach number, area
ratio and power coefficient in their regimes of applicability.

The CT net variation with Mach numL'er and power coefficient is shown in each of
Fig. 69, 70 and 71. The area ratio variation shown from figure to figure, is cross-
plotted as CT net versus area ratio in Fig. 72a and 72b for the range of Cp's and Mach

numbers. These figures show clearly the way in which each method predicts the area
ratio effect. Overall, both methods are good at 0.3 Mach number as may be expected
since here, compressibility effects are small while the forward flight velocity is
high enough to satisfy the assumptions of the theory. At M = 0.2, the trend is better
predicted by Method 3, as is also expected since its validity extends to the lower
Mach numbers. At 0. 4 Mach number, neither method excels, but this may be due
to compressibility effects. In general, the trends are properly predicted by both
methods; Method 2 tending to overestimate the effect of area ratio and Method 3 to under-

estimate it.

To further illustrate thiese points, an alternate presentation is considered in which

the differences between test and theory are considered on a percent error basis.

To simplify the presentation of the large amount of data contained in Fig. 69 through
71, an error measure has been defined for each configuration and Mach number.
This definition leads to the elimination of power coefficient as a variable, by re-
placing it by tie root mean square error in CT net over the power coefficient range.
This is better explained by the following development.

CT net is, in general, a function of Cp, M, and area'ratio, i.e.,

CTnet = f(Cp, M, A4/A2)

Choose a set of Cp's, (Cpn, n = 1, 2 ......

For a constant Mach number and area ratio, the error in CT net for each Cp can be
computed from Fig. 69, 70, or 71; i.e.,
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7.4.4a (Continued)
calc theory

CT net- CT net
En = calc (68)

CT net
Cp CPn
M
A4 /A2

where the subscripts o: che right designate that the indicated parameters beheld
fixed. Now an overall measure of the error incurred by the Cp variation can be
obtained by taking the square root of the sum of the squares of En d:vided by N, the
total number of CPn's used, i.e.,

N En

E = E(M, A4/A2) (69)

Eq. (69) is no longer a function of power coefficient and is a measure of the error
incurred for the particular Mach number and area ratio considered. E as defined
above, is plotted in Fig. 73 for the two calculation methods and each area ratio,
as a function of Mach number. This curve again illustrates for the higher Mach
numbers that the errors in the CT net calculation methods can be significant and that
neither method is consistently superior. For example, Method 2 appears superior
for the 1. 1 area ratio shroud whereas Method 3 is superior for the 1. 2 area ratio
shroud. Results for the 1.3 area ratio shroud show that Method 2 is better for Mach
numbers beyond 0.3 and worse below 0.3. Thus, it is difficult to choose one method
at the expense of another. Theoretical considerations do not shed much light on the
choice of methods since both share many of the same limiting assumptions although
Method 2, because it accounts for detail in the far wake, should have a slight edge.
The assuinption of Method 2, however, which states that the circulation in the far
wake is a scaled version of the propeller circulation, may be unrealistic, in view of
the wake distortion that takes place as the wake passes through the shroud and over
the centerbody. This may, in part, explain the lack of superiority of one method
over the other. Another unknown which enters is the shroud drag. '['his has been
obtained theoretically and could be partially responsible for the discrepancies observed
between test and theory In Fig. 69 through 73.

The picture at the lower Mach numbers is clearer as far as choice of method is con-
cerned. rheoretical considerations and comparison with test data both indicate the
superiority of Method 3, which obtains the jet velocity in the far wake in terms of
propeller thrust coefficient and, as discussed in paragraph 6. 3. 4, has no inherent limi-
tations on its range of applicability. Limitations do enter, however, in that the pro-
peller thrust and average disk velocity, the two variables that determine CT net, are
computed by the T.A.R. method which, as Indicated, loses validity as the lower Mach
numbers are approached.
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7.4.4a (Continued)

The above discussion indicates that for the higher Mach number range, neither
method gives consistently good results, although the general trends with area ratio,
Mach number and power coefficient are predicted correctly, as shown in Fig. 69,
70 and-71. A maximum error on the order of 17% is exhibited in Fig. 73, with most
errors being less than 10%. At the lower Mach numbers, Method 3 is far superior,as was anticipated, and here again the variations due to Mach number, area ratio

and power coefficient are predicted, although the differences between test and theory
are greater than is desirable. The next section will discuss the effects of the secondary
parameters on theoretically predicted performance and their comparison with experi-
-mental results.

7.4.4b Secondary Parameters

Evaluation of the performance variations due to changes in the secondary parameters
has been limited to the 0. 3 Mach number case. The linearization assumptions are valid

and the effects of compressibility are small at this Mach number, so it serves as a
good basis for the evaluation. The variations due to changes in tip clearance, blade
planform, propeller position and number of blades are shown in Fig. 74 through 77.
Fig. 78, 79, and 80 show the variations due to changes in shroud lip shape, shroud
length and shroud external shape.

The effect of tip clearance, as shown in Fig. 74 for tip clearance ratios, of 0. 911,
0. 909, and 0. 903 is small. The theoretical predictions also show a small effect.
The levels are better predicted by Method 2 but here again the differences are quite

small.

Variations in blade planform were also investigated to see the effect of propeller
circulation on shroud performance. The three planforms are described in paragraph
7. 2, and the effect of this variation on performance (CT net) is exhibited in Fig. 75.
Again the effect is secondary with the B1-3R giving the higher thrust. This trend
is predicted well by the theory, with Method 2 yielding slightly better agreement with
test.

The effect of.propeller position Xp is considered next, (Fig. 76). The propeller is
located at Xp = -0. 1023 and - 0.2528. The data and the calculations both show the
effect of changing Xp to be negligible.

The number of blades variation, as shown in Fig. 77, causes a slight decrease in

performance with the smaller number of blades. This was predicted by both methods,
the results of Method 2 slightly higher than test while the results of Method 3 were
slightly lower.

The effects of shroud lip shape, length and external shape on net thrust were found
to be small also, again as predicted by both theoretical methods.
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7.4.4c Summary

Comparison of the theoretically predicted total thrusts with experimental results
indicated that a clear choice between Method 2 and Method 3 was not possible. Method
3 was superior in the low Mach number range, as expected from theoretical considera-
tions. However, for the higher Mach numbers, neither method appeared totally ade-
quate. The reason for the descrepancics at the higher Mach numbers is threcLold.
First, both methods require simplifying assumptions for the calculation of the jet
velocity: Method 2 requiring the assumption of negligible wake contraction and Method
3 the assumption of one dimensional flow, Second, the total thrust in either case is
based on the knowledge of the axial velocity in the plane of the propeller and either the
propeller total thrust or its circulation distribution. Both of these are subject to the
same inherent errors of the T. A. L theory, and when used in the same equation coin-
pound the errors. Finally, the shroud drag is estimated theoretica.ly and is itself
subject to error.

The performance changes due to changes in the secondary parameters were small, as
expected, and on the whole properly accounted for by both methods.

7.4.5 Discussion of Centerbody Effects

In Phase I, there was some uncertainty as to whether the parametric variation effects
on performance might be clouded by the effect of the propeller test rig centerbody.
Therefore, performance comparisons were made of calculations based on the pro-

peller test rig centerbody (PTR) and a slender centerbody (SB) with tests. Fig. 81
shows the centerbody physical differences. The performance comparisons for area
ratio are shown on Fig. ,2 and for propeller position on Fig. 83 for propeller thrust
coefficient and net thrust coefficient versus power coefficient for a. 3 Mach number.

Figure. 82 shows that there is a difference in propeller performance due to center-
body. To better understand what is happening, the propeller performance variation
at Cp = 0. 30 was investigated and the results are tabulated in the following table.

Test CTprop Calc. CTprop (PTR) Cale. CTprop (S.B.)

B1-3WT 0.177 0.181 0.171
B4-3WT 0. 150 0. 153 0.146
BI/B4 1.180 1.182 1.170

From the table above, it (-an be seen that propeller performance changes of 5-6% are
computed due to the two centerb,dles. The PtTR representation better matells test
refults which were tested with such a centerbody. However, the changes in area
ratio which are represented in the table by B1/B4 (A.R. -= 1. 1/A.R. = 1.3) show
that the PTR computations agree well with test and that the SB differential computa-
tion only differs 1% from test. The net thrust comparisons show very slight differences
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7.4.5 (Continued)

with neither centerbody representation well defining the area ratio effect. The validi

of the net thrust computational procedure has been discussed in paragraph 7. 4. 4. The
net thrust results for the two centerbodies are comparable because of the compensating "
changes in Eq. (42) due to Va/Vo and CT prop as shown in the table below:

Va/Vo CT prop

PTR S"B PTR S B

B1 1.089 1.111 0.181 0.171

B4 1.289 1.356 0.153 0.146
B5 1.124 1.159 0.181 0.171

The effect on propeller position is shown in Fig. 83. Again, the PTR computation of
propeller performance better matches test data and both methods show the same effect
of parameter variation with the SB computations showing a lower level of performance.
The net thrust comparison is similar to that seen for the area ratio variation.

In summary, the computational procedure does show a difference in performance due
to centerbody configuration. The computations based on the PTR centerbody better
match test data which is based on such a centerbody. The incremental parameter
variation of area ratio and propeller position do not appreciably vary with centerbody
configuration and only the performance level changes.

7.5 SUMMARY - COMPARISONS OF CALCULATION AND TEST

The comparisons of test and theory indicate that for the higher Mach numbers, the
T. A. R. theory modified to include the corrections discussed in paragraph 6. 2 predicts
propeller performance that is in excellent agreement with experiment. At the lower
Mach numbers, the comparison is poorer, and is attributed to inadequacies in the
T. A. R. model and at static the propeller theory also. The good agreement between
the theoretical and experimental axial velocity distributions and dCT/dX distributions
further substantiate the validity of the method for the higher Mach numbers.

[: The shroud total thrust calculation method presents a problem. The two methods
investigated both gave fair agreement at the higher Mach numbers, whereas Method 3,
as expected, was better at the lower Mach numbere. The agreement between test and'
theory was not as good as that exhibited by the propeller, indicating the need for fur-

~ther refinements in both the inviscid and viscous portions of the thrust calculation.

Definite choice of one of the methods is unjustified at this point, and further investi-
gation is warranted. For purposes of uniqueness in the computer program, however,
Method 3 has been incorporated along with the shroud drag calculation method based
on the flat plate friction drag.
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7.5 (Continued),

The shroud pressure distribution was well predicted everywhere but-near the leading
edge at the higher Mach numbers. The singularities inherent in the theory give rise
to infinite velocities there, which are partially corrected by application of the Riegels
factor. The leading edge discrepancies are in part due to this and in part may be due to
the inadequate prediction of the propeller velocities along the shroud reference line.

At the lower Mach numbers, the theoretical pressure distributions and performance
predictions deviate significantly from the experimental values, due to the inappiic-
ability of the theory at these lower Mach numbers.

The effect of centerbody on performance is properly predicted as shown by the com-
parisons in paragraph 7. 4. 5 for the PTR and the SB.
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8.0 EXTENSION TO STATIC

Extension of the T.A.R. theory to include the static and low speed flight regime has
not~been successful. hyview of its formulation, this is not surprising. In fact, it
is impressive that it P ains valid to as low a forward speed as it does. The purpose
of *iis section is therefore to recommend the use of a temporary alternate calculation
method for the low speed regime and to delineate the boundaries within which it is
applicable.

To summarize, the various corrections applied to the theory improved the performance
comparisons at the higher Mach numbers, but did not improve the lower Mach number
agreement.

The propeller and net thrust predictions were in closest agreement with test data for
values of M > .2. The shroud pressure distributions at M = .3 and .5 were good,

but very poor for M =.05. A cutoff of M = 0.2 for the pressure distribution is also
chosen since good comparison between test and theory still exists at this Mach number
as shown in Fig. 84 for the B4-3WT. Below 0.2 Mach number the method loses
accuracy and recourse to an alternate method is necessary. Hamilton Standard ex-
perience has been to use a less sophisticated theory based on the work of Patterson,
discussed in Ref. 16. The application of this theory has been reduced to a convenient
cook-book technique which is contained in Ref. 17. This theory does not account for
the effects of such parameters as shroud shape, tip clearance, and propeller location,
but is valid for the zero and low Mach number range. Since it does not account for
shroud shape it is incapable of predicting shroud pressure distribution although it
does account for the effect of area ratio. In addition, the method requires that the
shroud exit plane static pressure be specified. This requires a-priori knowledge of
the pressure field, whichmust be obtained experimentally. A value of this pressure
equal to the free stream ambient value is found to be valid for shrouds with reasonable
chord to diameter' ratio (0.3 or greater). It is therefore recommended that the method

of Ref. 17 be used in lieu of the T.A.R. method for values of M below 0.2 with a value
of exit plane static pressure equal to the free stream ambient. It is also recommended
that a method be derived for the low speed and static regime which has the sophistica-
tion to account for the effects of tip clearance, shroud shape, area ratio and also to
predict shroud pressure distribution. The method must eliminate the shortcomings
of the theory discussed herein, such as the invalid representation of the shroud thick-
ness form, and should incorporate the corrections developed during this contract.
The initial static regime work of T.A.R. (Ref. 18) based on the assumption of an in-
finitely thin shroud with small camber and a uniformly loaded propeller serves as a
starting point for this effort. The inclusion of the effects of large camber and thickness
and variable propeller circulation would result in a method that had the degree of
sophistication required and when coupled with the forward flight method reported on
herein, would provide a tool which is uniformly valid over the complete flight regime.

166



Hamilton. TEUICATCROA* Volume J
Standard A

PRESSURE COEFFICIENT VS X/

1.0~

-*.205 ...THEORY..

.2
# .-.

0 NE UFC
.6J OUEUFC ETDT

Ii..15
I.98 -. 6

0 4C RP l

- .2 " '11

.1 .2 ,34 . .6 .7 .8 .11.MIM

PECNAERO:HRD /

F1 IGUEN4

.167



HSER 4776milton,. U Volume I
Standard A@1

Il

8.0 (Continued)

The limit beyond which the forward flight T. A.R. theory is invalid has been shown to
correspond to a value of M = 0.2. This lower limit represents the point at which the
assumption that the induced velocity U be small compared to Vo is violated. Rather
than use Mach number as the delineating parameter, a parameter more directly related
to the assumption U<< Vo is desirable. Such a parameter is the ratio of the average
axial velocity at the propeller plane to the free stream value Va/Vo. A value of this

parameter around 1 implies that the induced velocity is small compared to Vo . A
value much greater than 1 implies the induced velocity is of the same order as Vo.
This parameter is readily calculated and is printed out by the program under the
label "ratio of average duct velocity to free stream velocity". To determine at what
value of Va/Vo the theory becomes invalid, the nfWormation on Fig. 47 and 48 is re-
plotted as percentage error in propeller thrust coefficient versus Va/Vo. Fig. 85
represents this data for the 1.1 and 1.3 area ratio shrouds for power coefficients of
0.15, 0.25, and 0.35. The error, on the average, increases as Va/Vo increases,
as expected. A value of 7a/Vo of 1.35 or less results in a maximum error on the
order of 5% and corresponds approximately to a Mach number of 0.2. Use of the
program should thus be limited to cases in which the printed value of Va/Vo is less
than 1.35 or so. For values greater than 1. 35, the method of Ref. 17 should be used.

iA
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9..0 LISTS OF'SYMBOLS, SUBSCRIPTS AND SUPERSCRIPTS

.rincipal Nomenclature

Aj -propeller wake area

An - coefficients of thickness distribution expansion (Eq. 18)

Ap - propeller area at propeller plane

an - coefficients of source distribution expansion related to An (See Appendix 11. 1)

B -S number of blades

b/D - propeller chord/diameter ratio

bov - coefficients of Glauert Series

bo2 _ two dimensional Glauert coefficients

SC - shroud chord

CD - drag coefficient (Eq. 56)

jCDF - shroud friction drag coefficient (Eq. 53)

CD/CL - propeller lift/drag ratio

ni - binominal coefficients

:1C L -propeller lift coefficient

Cfe - external shroud surface friction drag coefficient

Cfi - internal siroud surface friction drag coefficient

Cp - p~ower coefficient = power

, . o 3 D5

pn D
jpo

C - pressure coefficient =
p

Cpo - peak negative value of shroud surface pressure coefficient

Cps - partial pressure coefficient
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9.0 (Continued)

Thrust
CT p n2 D4

Thrust
CT prop =12V2 21/2pV0 7r R

CTnet CTtot + drag

Total Thrust
CT tot PnnD 4

Total Thrust
Ttot qo Ap

CTS = Fs(2 i p Rp2 -
2 thrust coefficient due to shroud vorticity

CTV=FV(2 pWp2 Vo 2)  thrust coefficient due to shroud vorticity

D - propeller diameter

dCp/dx - sectional non-dimensional power derivative

dCT/dx - sectional non-dimensional thrust derivative

Des CL - airfoil design lift coefficient

F - tip correction

FI) - total friction drag force = F1)i + FDe

FD - external surface friction drag force

V . - niternal surface friction drag force

Fs - shroud axial force due to shroud thickness

Ft- f Vo

Fv - shroud force due to shroud vorticity

ft - strength of shroud source-sink distribution h
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9.0 iCoontinued)

( I- unit matrix
_ Vo

J-advance ratio-
. 14 nD

Vo

Va

nD-

VaJ2 Rp l

M - free stream Mach number

M/Mr - ratio of sectional Mach number to critical Mach number
It cri t

N - propeller speed (rpm)

n - propeller speed (rps)

p - static pressure

p o - free stream static pressure

[P] - matrix of curvature, coefficient5

Pg - propeller geometric pitch

Pt - tr'ue pitch of propeller wake

Q,/2 (w, - Legandre function with respect to argument w

qa - 1/2 p V a2

r - radius

rj - radius of wake at infinity

r v - radial location on propeller

iv = rv/R
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9.0 (Continued)

R - shroud reference cylinder radius

Rcb - radius~of the centerbody at the.propeller plane
voC

Reo -Reynolds number =

Rp - propeller radius (ft.)

Tprop - propeller thrust

t - 1/2 shroud thickness

t/b - propeller sectional thickness ratio

u - axial induced velocity along shroud surface

U - axial induced velocity along camber line

uo - maximum velocity on shroud surface

Up - axial component of the propeller bound vortex velocity

Ue - axial velocity at propeller plane due to all singularities except the propeller
bound vorticity

V - U/ 17l

I Va - axial velocity at propeller plane

Va - average total axial velocity in propeller plane
V- average total velocity in far wake

Vo - free stream velocity (ft/see)

VCB - centerbody induced radial velocity along shroud surface

ve - tangential velocity at propeller plane due to all singularities except the propeller
bound vorticity

vp - tangential component of the propeller bound vorticity velocity

Vr - radial velocity along the mean camber line

Vr Vr/Vo
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9.0 (Continued)

Vrl- propeller wake induced radial velocity along shroud surface

w - velocity relative to a point in the propeller fixed coordinate system

2 2W s  e +FW

we - tangential component of w exclusive of propeller bound vortex velocity

wx - axial component of w exclusive of propeller bound vurtex velocity

x - blade sectional r/Rp

X - location on shroud reference cylinder normalized with respect to R.

x/c - nondimensional shroud chord location measured from the leading edge.

Xp - propeller location measured from the shroud mid chord position

Xp = Xp/R

A Xp =(Xs -Xp)

Xs - field point on shroud at which radial velocity is computed

'Xs = XS/R

Xv - position of shroud vortex ring

Xv Xv/R

Xv 
= 
Xs - x V

y - shroud thickness form

Yy/R

a - blade sectional angle of attack

an - coefficients defined by Eq. (32)

8 - sectional blade induced angle of attack

2-D(C. B. )2-D(
0,,,=~ bov + box'

I - strength of bound blade vortex
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9.0 (Continued)

r= r/Rpv o

yT - shroud vorticity distribution

E effective cambere

E L- slope of shroud lower surface (Eq. 21b)

E -,:slope of shroud upper surface (Eq. 21a)

E(X) - slope of the shroud camber line

e - angular variable defined in Fig. 1

E - blade sectional twist

e 3 / 4 - blade angle at 3/4 radius

A 0 - sectional twist change from 3/4 radius

t - momentum thickness

- shroud chord/diameter ratio C/2R

u - tip clearance Rp/R

v - kinematic viscosity of air

p - density

-" +

0o - sectional advance angle

- Glauert variable

- Glauert variableIO V
- rotational speed (radius/sec)

3 =+ AR 2) + (r1v)27 /2rv
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9.0 (Continued)

Subscripts and Superscripts

c - continuous velocity

C. B. - due to centerbody

D - discontinuous velocity

jp - due to propeller wake at propeller plane

- due to propeller wake at infinity

L - lower surface of shroud

S - due to shroud

u - upper surface of shroud

r - due to propeller wake
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11.1 INCORPORATION OF CENTERBODY INTO THERM ADVANCED RESEARCH THEORY

11.1.1 Introduction

The centerbody of the shrouded propeller is represented by a distribution of sources

and sinks along the shroud centerline. The effect of this distribution on the shroud

vorticity distribution is derived,and the expressions for the axial velocity at any fleld

point are presented.

11. 1.2 Incorporation Into Therm Advanced Research Theory

To insure that the flow is everywhere tangent to the shroud, the boundary condition

equation is written as follows.

Vri Vri . Vri

V 0 -/propcllcr TO) shroud o centerbody

where E is the slope of the shroud camber line. The contribution of the propeller

is given by Eq. 20 of the text. The shroud camber is known qnd the contribution of
the centerbody will be derived. This leaves the contribution of the shroud itself as

the only unknown, which is written in terms of the known quantities as follows

vrl vrl v Il
=C- -r

VO /shroud V0 / propeller Vo ) centerbody

Multiplying both sides of the equation by 2, the following expression for the effective

camber C 0 results,

Vrl 2 [ ~oVr! centerhody Irol

The two-dimensional Glauert coefficients are related to the effective camber C e

by the following equations, as discussed in paragraph 6.1.2 of the text,

2-D 2 
7r

boo 7 T C e do s

b - fr C e ds4Dg d q~0

7r2-1) 4it
boy - C cosV q6 d

7r ce a S
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~i 11.1.2 (Continued)

Thus, the centerbody Is accounted for by Incorporating vri centerbody* The
rI/V; j~ centerbody source-sink distribution is considered next.

j 11.,1.3 Derivation of Velocity Equations

In this section the expression for ar/o centerbody will be derived, assuming that
the centerbody Is represented by asource-sink distribution along the shroud centerline
as illustrated beliow.

IiII
I ________________________Ir

Figure A-i. Source-sink Distribution Along Shroud Centerline

The vector velocity at a distance P from a source element of strength 6 Qis given

by the following equation.

6.v = Qi

where 6 Q is thle volume of fluid 1)01' unit time emitted Iy the source. The origin of

the (x, r) coordinate system Is located at the center of thle shroud centerline. Express-
lng the distance p In~ terms of its coordinates, the following equation results
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The cosine of the angle 0 is given by (x-xo)/P and the sine is given by r/P . A unit
vector in the p direction can be expressed by its components, i. e,

Cose 0- + sin 1 + + Lr
CoeJ.. I nx r p x p r

Upon substitutioa of these terms, the vector velocity 6 V is given by Eq. (1).

' _Q (X-Xo) jx +_r i .
4 7r (X-X°)2  r2 3/2 (1)

Since the sources and sinks are distributed along the chord line of the centerbody,
a function S(Xo) is defined which represents the strength of the source per unit
length of the chord line. Thus 6 Q can be expressed as follows.

6 Q = S (Xo) d Xo

where d Xo 4s an element of length along the centerbody chord line. The velocity
v due to the complete distribution of sources and sinks then becomes

¢s(,,x) [(x-x,) 1, + ri]dX

fC 47r [(x-xo) I + r] 3 /

The radial component of this velocity at any point (x, r) is given by

vr = v * " = , S(X) rdX o  (2)

-d 4 ~ +~2I3/2

2 + r

The axial component is given by

v) (x-x) d Xo (3)

a 4 (X-X
2 +r2] 3
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11.1.3 (Continued)

These equations can be put into more compact form by nondimensionalizing with
respect to R, where R is the duct reference radius, as follows.

L r x-- X - a
R R R -

V S (Xo0) r d X0

Then Vri ) f ( o
V° CB _f 0 2V J(~ + -21 (3/2)

4 47r RV0  r(.X)

Va) 8f (XO) (X-X 0 ) d X0_To)  =f -,,-..2 21 -3/2~
0 CB J 4,; RV o I(X-Xo) 2  + r21 3/2

Next define a non-dimensional source distribution as follows.

SI (FX) S (Xo)
4,r RV o

The equation for the radial velocity then becomes

iCB = L (Ko) r d Xo (4)
CB_ [(-Kc) 2 + - 21-32(4

Vo  CBf/

11.1.4 Assumption of Power Series for Source-Sink Distribution

In order to racdltate evaluation of Eq. (4), S' (Xo) Is expanded Into a power series
as follows.

8

S'(Xo) = _ anXon-1
n=
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; 11.1.4 (Continued)

The expression for the radial velocity now becomes

n-1

Vo, f -o)2+ 2] 3/2(
CB -a

The following substitutions reduce further the complexity of the integration.

Let r/=Xo -X, X = 77 + K, d l= d77and XO>17I

Then vri - a, (W+ nX) nd (6)

V0 CB f r )

-a-X

The expression (7- -X) n-i can be expanded by the binomial theorem and results in

n-1 n-1 n-i-m
(7 +)nX) = d 7 71

m=m

n-1
where dmn are the coefficients afforded by the binomial theorem as given in
Dwight, "Tables of Integrals and Other Mathematical Data", page 1. Substituting
the above expression in Eq. (6), the radial velocity can now be expressed as follows.

vri - 8 n-i -7. 1
-rl = r 2 an dm X jm di7n (M 2  2 r23/2

V° CB n=i m=o

(7)
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n-i n-I _ n-i-m 7 in
Let in  

=  2 2 X/ (8)In~ d~2.~)3/2 (8)

and m2 2

L I d?7 2(9)m (172 + 72)3/2(9

)
-o x

Eq. (9) can be integrated analytically and yields the following results (for locations
on the shroud reference radius, i. e., T i).

N MLO -
Y Z

-- V :2_2 1/2, + 9+-2 1 '/2an

where N=j-X, M= -X , Y = ( r-+ )/ Z +2) andr 1.

L 1 1 L In -N + Y + M N

z 2 L -F'] z

L3 1 NY N MZ M + 3 In FM+Z]
+ Y z Z 4 2 Y 2 Z 2 LN+YJ

y 3  1 Z 3  1
-2Y - - + 2Z -

'5 3 Y 3 Z

5  5N3  15N M 5  5M 3  15M 15 N.Y
L -+ - + + In-- in4Y SY 8Y 4z 8Z 8Z 8 z

Y5 3 1 Z 3 1

L - Y + 3 +Z - 3Z-
5 T 5 Z
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11.1.4 (Continued)

The radial velocity is then given'by the following equation.

8 n-i

=an F dm X, Lm (10)

V°B ni m =o

The methods employedi thus far have allowed for an analytical integration of Eq. (5)
rather than a cumbersome numerical method. The prob!em has now been reduced to
the evaluation of the coefficients an of the power series representing the shroud
source-sink distribution.

11.1.5 Relationship Between the Body Shape and the Source-Sink Distribution

The relationship between the body shape and the source-sink distribution can he derived
as follows, assuming that the axial velocity induced by the source distribution is small
compared to Vo .

go A A+

S LE) dX .E

Figure A-2. Derivation of Relationship Between Body Shape and
Source-Sink Distribution

With this assumption the flow at point (1) is VoR 2 , where A is the area divided by R2 .

The flow at point (2) is VoR 2 (A + - d XLK)
dX LE

The difference in the flow between points (21 and (1) is the flow added by the source,

i.e.,

2- dA d - 2 RS

V (A dXLE) V = (XLdX

dA
and Vo R LE = S (XLE)
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In terms of the non-dimensional source distribution S' (X, E) 47TRVO this equation
becomes

= S"X.E) 
(1)

and relates the source distribution to the physical shape of the centerbody.

11.1.6 Evaluation of Coefficients, an, of Power Series for S'

The coefficients of the power series can be directly related to the body shape by use
of Eq. (11), i.e.,

8- -

anXon-' S' (Xo) = B dx
L2 dX

There are two other constraining conditions that will be used in evaluation of the
coefficients. The first of these is that the leading edge radius is related to the co-
efficients of the series as is shown in the following section. The second condition
is that the body close on itself, or that the sum of sources and sinks be zero.
Utilizing these three conditions, the relationship between the coefficients, an, and
the body shape will be derived in this section.

For the purpose of simplifying the derivations It is advantageous to relate the power
series to a coordinate system originating at the leading edge of the centerbody.
The non-dimensional source distribution is thus given by

S'(XLE) AnXL n-1

n=I
where An represents the coefficients for the expansion about the leading edge. The
leading edge radius of the centerbody Is related by the following expression (as
shown in paragraph 11. 1. 7)

R 2A 1 (12)

to A1 , the first coefficient of the power seies.

The method of sources and sinks requires tnat the sum of the sources and sinks be
zero so that the body closes on itself, i. e.,

J c  St (X,) dXLE 0
0

where C is the ion.dimensional centerbody chord length. Evaluation of the above,
integral in terms of the power Series expansion of S' (X,:) yields the [ollowing ex-
pression.
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8 n-_ n
F An C =0 (13)
n

Eq. (13) makes it possible to represeat A2 in terms of the other coefficients, I. e.,

A2 =-2 [A + 8 A n-

By utilizing the above equation to eliminate A2 the non-dimensional source-sink dis-
tribution can now be represented by the following equation:

2A 1  8 A8 n-1
S'(XLE)= A - LE -2RLE _j (B +c~ + L AnX. (14)

-(+) n n n=A

Since A1 is known (Eq. 12), it remains to solve for the other siK coefficients of Eq. (14)
and to relate them to the Ro coordinate system. The method employed to determine
these coefficients is a curve-fitting technique known as the "Method of Least Squares."
This method derives the coefficients of a polynomial such that the sum of the squares
of the differences between the actual data points and their representation by the poly-
nomial will be a minimum. This insures that in the case of a series of plotted points
the best representative curve in the least squares sense will pass as closely as possi-
ble to all p'oints.

Recall that the source-sink distribution is related to the body shape In the following

manner.

S -= 2S, (XL)
dX Le

Knowing tiw variaftion or conterbody radius with chord, it Is possible to obtain the
V1lu(' or S'(XLr) at any nUlfll)cr of points along the chord. This information will
rel)resent the scries or plotted points for which the "Method of Least Squares"
will afford the six An's which give the best representative polynomial.

With the coefficients An of the power series being given by the method described
above, the only remaining task is to relate the coefficients to the Xo coord.nate
system.

Making use of the fact that

) aX _n-i 8SS'(Xo) = E anXo = An(Xo+ )n 1i

n~l n=I
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and of the binomial expansion it can be shown that

ai = A1 + A25 + A3C2 + A4 &3 + A 5 4 + A6i 5 + A7
6 + A8 "(7

a2 = A2 + 2A3&+3A4& 2 + 4A 5 a 3 + 5A 67&4 + 6A 7c 5 + 7A8c 6

a3 = A3 + 3A 4 0 + 6A 5F 2 + 1OA6 3 + 15A 7&4 + 21A 8i 5

a4 = A4 + 4A 5s+ 1OA67 2 + 20A7 
3 + 35A8ct4

a5 = A5 + 5A 6 6+ 15A7&2 + 35A87 3

a6 = A6 + 6A 7 &+ 21A8i 2

a7 = A7 + 7ASet

a8 = A8

11.1.7 Relationship Between the Leading Edge Radius and the Coefficients of the Power
Series

The relationship between the leading edge radius and Al is now derived. The non-
dimensional source distribution is represented by the following polynomial.

t 8
S (XLE) = Ann1 47rRVo

n1l

Substituting into Eq. (11) there results

dA 8- (15)
d-J, 4 7r A (15

dX.E n 1 C

Normalizing the equation for the area In the following manner

A - i- 2  2 - 2rr . . 2 i rr
" d X d LE

Eq. (15) becomes

8 dc

n-1  - (16)1 nXLE = a dXLE
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Integrating Eq. (16) yields the following results.

n 2
n LE: 2

zc2 4 8 A n  X LEn

rCB L_
r

n1/2

CB '.(17)

whereKn = An/n.

The leading edge radius in terms of rCB is given by the following equation
3/2

[1  rdr 2] /

RLE = Xur--n LdXL, (1 C)

XlE~ dXLE

Changing to the barred coordinate system,

dr dr dr dX
- rCB drCB _ 1 CB 1 CB E XLE'

rCB _ R 'd- R RE = R ;dXLE dXLE

L.E LE LE

drc. dr-,
ddXLE dXLE

-2dXLE R

dXLE 
dX 

d

-2dX IT 2XLE

Substituting these expressions Into Eq. (18), there results.
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From Eq. (17)

8 1/2
rC13 = 2 Kn LEI

n=l

Differentiating the above expression,

dC 8 )-12 8 n
d~ca _Kn X 12nKn X LE 1

LE

dX n.n X L

±nCB n=13i Le n)
Kn X LE

d c = n=1

Taking the second derivative,

Fdo Equ. (17)l n~

8 X )

dir 1/2 n2 -

2 \ n nn

n=l n=

di~r XLMn~X

Kn LKn X E)

T the secd da t v

R2n\1/ / 3/22\ /- -\

d XLE Kn X.

(() 
X2191



U ,HSER 4776
Hamilton U R- Volume I
Standard Ao

11.1.7 (Continued)

Substituting the first and second derivatives into Eq. (18),
8 n) 8 n-1)_2] 3/2

R liran 1 =

LE-O ( -- KnXLE (~l n (n-I) KnXLE - -2- n lKnX LE

on taking the required limit the desired relationship between ' RE and A1 results;

~KO3
R1 2= -2KI =-2A1 1
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11.2 APPLICATION OF PROPELLER TIP CORRECTION

11.:2Z. 1 Introduction

The application of the tip correction discussed in Ref. 1 to the circulation distribution
of the shrouded propeller is investigated. This investigation is carried out in two
parts. The first concerns itself with a study of Ref. 1 and the generation of curves
which defined the tip correction factor as a function of number of blades, advance
ratio, etc. The second part concerns itself with the incorporation of this correction
into both the Vortex and Goldstein propeller performance prediction methods.

11.2.2 Discussion of Tip Correction Factor

The optimum propeller sheds a wake that is a rigid helicoid at downstream infinity
moving with constant velocity. The radial velocity in the wake is small, except at
the edge of the helical surfaces. It was shown by Prandtl (Ref. 3) that this radial
flow has the effect of reducing the propeller circulation near the tip.

The model used by Prandtl first replaces the helical vortex sheet by a series of para-
llel-disks. Since the flow around the edges is being investigated, the circular shape
of the disks can be neglected, and semi-infinite vortex sheets used instead. The
three dimensional flow is thus replaced by the two dimensional model shown below in.
Fig. A-3.

P 1

Figure A-3. Two-dimensional Model
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11.2.2 (Continued)

The gap is related to the pitch angle 46 by the following equations.

X= tan (
2 7rR (2)

B -- sin (2B

where Rp is the propeller radius, B is the number of blades, and is defined by the
velocity diagram of Fig. A-6.

Using complex variables, Prandtl solved this two-dimensional potential flow problem.
The propeller circulation is related to the line integral of the velocity around the edge
of the vortex sheet by Helmholtz' laws. Carrying out this integration, Prandtl obtained
the following propeller circulation drop-off factor Foo,

FO_ 2 cos-l (e-f) (3)7r

where

f =(I _ ) B V+A (4)

Rp 2X

r is radial distance, and Rp and X were previously defined. The factor F00  varies
from 1 inboard to 0 at the tip as shown in Fig. A-5.

Goodman (Ref. 1) took a similar approach, but now put a wall near the vortex sheets
as shown below.

y

iI i
A B

1 ---- C ZPLANE'p,
IPI'_ _ Dmo.

F P E

I

Figure A-4. Placement of Wall Near Vortex Sheets
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The distance d represents the difference between tunnel (shroud) radius and propeller
radius. Again solving for the flow, and integrating around the vortex sheet, the circu-

lation drop-off is.

F 1- u { sin- 1 [cosh g/cosh (f + g)] / si n -1 (1/cosh g)} (5)

K [sin -1 (1/cosh g)]
where f is the same as before and

g=d B\ 2(6)

K is the complete elliptic integral as a function of g, and u is the elliptic integral of

the first kind and is a function of both f and g.-

From the sketch, it can be seen that d = oo represents the wall at infinity, and
from Eq. (6) it can be seen that g - o. If this value is put into the circulation
reduction factor F, Prandtl's Foo for no wall results. The factor F is shown in
Fig. A-5.

Since F> Fco, it can be seen that the presence of the wall increases the reduction
factor (the circulation does not drop off as much). This is because less air can flow
around the tips, and must therefore flow around the blade section in a manner approach-
ing the two-dimensional case, resulting in increased circulation and increased thrust.

11.2.3 Application of Tip Correction Factors

The theory of Ref. I represents the edge of the propeller wake by an infinite number of
stacked plates adjacent to aif infinitely long wall. The drop off in circulation in the
presence of this wall is then computed using the tip correction factor discussed in
paragraph 11.2.2. In the shrouded propeller, the wall of the shroud does not extend to
infinity, so that the analogy between the model in Ref. 1 and the shrouded propeller is
not exact. However, the shroud is adjacent to the propeller wake in a region just down-
stream of the propeller. Since this portion of the propeller wake has the greatest in-
fluence on the induced velocity field, it is desirable to represent it as accurately as
possible. Therefore, the errors incurred by using the model of Ref. 1, (with its in-
finite wall) should be small since only that portion of the wake which lies beyond the
shroud exit is improperly represented, and this portion has only a small effect on in-
duced velocity.

The application of this correction factor to vortex theory and the Goldstein theory will

be discussed in the following paragraphs. Since in vortex theory the velocity diagram
is representative of the circumferential average, or actuator disk, and since the wake
flow as discussed in paragraph 11.2.2 is representative of a finite bladed propeller, the
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11.2-.3 (Continued)

solution for the wake flow will be used to correct the average velocity diagram for a
finite number of blade effects. The application to Goldstein is more straightforward
since the infinite tip clearance solution for F(F = F oo ) is analogous to the Goldstein
solution, and the effects of tip clearance can thus be incorporated by taking the ratio
F/Foo as the correction.

Considering now, the application of F to the vortex theory, the expressions for the
average axial and tangential velocities, subject to the assumption of negligible wake
contraction, are given by Eq. (7) and (8).

Uz r FB (7)
4 7rr Tan (7

I" = -(8)
47rr

where

Jr = blade circulation distribution
B = number blades

= pitch angle of helix (based on vortex theory)
r = radius

Note that vortex theory represents the propeller by an actuator disk, so that the veloci-
ties given by Eq. (7) and (8) actually represent the circumferentially averaged velocities
of a finite bladed propeller whose product of circulation and number of blades is B "

The-actual velocity fieldvaries circumferentially, and in particular, the actual three-
dimensional values of Uz and U at the blade differ from those given in Eq. (7) and
(8). It is possible, however, to deduce the velocity diagram at the blades by use of
the wake solution of paragraph 11.2.2.

The velocity diagram for a typical blade section is shown below.,

2

Vi

w UZ

/3 U

V1

0

Figure, A-6. Velocity Diagram for a Typical Blade Section.

197



Hamilton, U HSER 47761 W 0 R1 : 1 U I MTCO t C O I IO A T IOV 
u

Standard A@ Volume I

11.2.3 (Continued)

where U is the displacement velocity of the far wake, that is, the velocity with which

the far wake translates relative to stationary air. The velocity V1 is made up of Vo
plus the velocity due to the shroud and centerbody singularities. This diagram is

based on the actual velocities at the blade, and not the circumferentially averaged

velocities, which will be denoted by a bar. Under the assumption that the wake is a

rigid helicoid, the wake induced velocity Vi is perpendicular to the surface of the

helicoid as shown.

Now, it is also possible to draw the average velocity diagram for a given propeller

radius, and this is shown belov.

2

vi

rQl

-- V
where U represents the average of U and will be explained later. Note that is also

perpendicular to the wake surface, as can be shown from Eq. (7) and (8). If 1 re-

presents a unit vector in the 5 direction as shown above, then the condition that V i be

perpendicular to 1T (or the wake surface) is that

Vi'* 1 = 0

But

1 = cosi + sinl j

and by Eq. (7) and (8)

--- PB 1 B+
Vi

4 7rr Tan 4 7r r

Thus
(c 7 os4 sl 0

-. '-
tan

198



fHamilton U HSER 4776
Standard OF ~EO AIRCRAT COqPOAT Volume I

11.,2.3 (Continued)

and Vi is in fact perpendicular to I

From Fig. A-7, the relation between Uz, U and U is given as

-2 U2  2-

z + U -4 cos

Substituting from Eq. (7) and (8) for Uz and U0 , there results,

FB oU o sin (9)
47r 2

Thus, Eq. (9) gives the circulation as a function of U, the average displacement
velocity of the three dimensional wake.

The meaning of U and the relationship between U and U can be seen more clearly if
reference is made to the following illustration, which depicts the flow about the
flat plate approximation to the propeller wake.

F -6 - E  .
17 16 15 I

D 1

! ,14 121 1 S __ _
-J I1

AB

SU U U

Figure A-8. Flow About Flat Plate Approximation

hi the above, each plate is taken to move with the displacement velocity U. Thus the
axial velocity of the fluid at the plate, say point A, is U. If a point between the plates
is chosen, the axial velocity is different from U. If w is defined as the axial velocity,
then on the surface of a plate w = U, and the average of w represents the average of
the axial ielocity between the plates, and Is in fact the U referred to in Figure A-7,

since this illustration represents the velocity diagram based on average velocities. Thus

S

=- wdx
0

199



ttSER 4776
Hamilton=,5.. ,,o.O T, Volume I
Standard ®

11.2.3 (Continued)

Now, a relationship exists between U and U and is derived as follows: Consider the
path ABCD in Figure A-8 above. The circulation about the path is zero and is given as

C=I11 +I12 + 13 
+ I14 = 0

where s C D A

,= f wcx, +2=3f+d, 1=f  w 1x, 14=1 vdy
B C D

Now,

14 can also be written as

G

I, =f vdy

C ,

since be flow is periodic. But vdy + vdy is simply minus the circulation

around the edge of the sheet and is equal to the potential jump , across the sheet.
Thus

I2+4 C G

13 + 14 =fI +17

B C

and 11 can be written as

11 = -13 - A I

13 can be obtained as follows. Consider the path DCEF. Again, th~e circulation
around the path is zero so that

13 -115 + 16 + 17 =0

But due to the periodicity 15 = .17, so

13 -16

E
where 16=-f wdx

F
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16

Now ---represents the average axial velocity along the wall, and is taken to be zero

so that.the solution physically represents the flow field of a wake translating relative
to a fluid mass which is stationary with respect to the wall. With this condition im-
posed, 16 and therefore 13 are zero, and II, the average axial velocity between the
plates becomes

S
S U = I =  wdx= A

0

But - Alp as shown in Ref. 1, also represents the circulation drop off near the tip.
Thus from Eq. (19) of Ref. 1, which is the expression for - AO

S Z cosh ( r ccV1  Gcosh 7d-) cosh 7(da
7T S S S

whre the modulus of d - 1 is sech - and where C is a constant that is determined
by the condition that U = U when a, S the inboard distance from the tip of the sheet
becomes infinite. Upon evaluating C, in the manner described in Ref. 1 Eq. (19)
and (20), the expression for U in terms of U becomes

U = UF (10)

Thus it turns out that F has two interpretations. The first, as discussed in Ref. 1,
is that F represents the drop in circulation near the tip of the propeller. The second,
as discussed here and in Ref. 3, that F represents the ratio of the average axial or
displacement velocity to the actual three-dimensional displacement velocity.

Substitution of Eq. (10) into Eq. (9) gives the circulation distribution of a propeller
based on vertex theory corrected for the three-dimensional effects of the flat plate
wake. This theory will henceforth be referred to as the corrected vortex theory.
The result of substituting Eq. (10) into Eq. (9) is given by Eq. (11),

]-_UF Cos sinai 2 7r
B (11)

where it should be noted that 0 is obtained from the average velocity diagram. If
the propeller is lightly loaded, in the sense that wake contraction is negligible,
(an assumption which has been used implicitly throughout the discussion), then the

displacement velocity U and therefore U is small compared to V1 , so it is reason-
able to assume that l= . With this assumption Eq. (11) becomes

U F cos 2 # tan 02 r
B (12)
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An expression similar to Eq. (12) can be obtained from the Goldstein theory. The
velocity diagram at the propeller is that shown in Fig. A-6, so that Uz and U9 are
given in terms of U by the following expressions

Uz 1/2Ucos 2 (

U = -1/2Ucos sino

In addition, Goldstein's solution to the flow about the wake of the propeller results
in the following expression for circulation as a function of U, (See Ref. 2),

KU 2 7rr tanO (13)
B

where K is the Goldstein K factor, which depends in part on r, and gives the drop in
circulation at the tip. Thus the factor K is equivalent to the tip correction factor F
of Ref. (1) for infinite tip clearance.

Thus, in order to correct the Goldstein theory for the effects of tip clearance, the
ratio of F to Foo (see Fig. A-9) will be applied to the Goldstein K factor. This method
of applying the tip clearance cbrrection assumes that the ratio of circulation with
finite tip clearance to circulation with infinite tip clearance is the same for both the
flat plate representation of Ref. 1 and the actuai geometry consisting of a rigid
helicoid enclosed by a cylinder.

If Fr is defined as the ratio of the tip correction factor F at the given tip clearance to
Foo, (i. e., Fr = F/F o), and then Eq. (13) becomes

U2 rr tanO (K Fr) (14)
B
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11.3 THRUST DUE TO DISTRIBUTION OF SOUICES

11.3.1 Introduction

The force on the source and sink distribution representing the shroud thickness is

calculated in terms of the velocity at the body due to external sources ard sinks. In
order to do this, a theorem from Ref. 1 is used that gives the force on an
obstacle due to a source or sink in terms of the volocity at the singularity due
to all causes except this singularity itself (See Fig. A-10).

i = ith singularity
• = Force on body
q = vel. at singularity i due to

other causes

Figure A-10. Force on Obstacle.

11.3.2 Preliminary Analysis

Ref. 1 gives the force on an obstacle due to a source i as

Fi = 47rm i p qi (1)

where m i is the strength of the source, p is the density of the fluid, and q is the
velocity at i due to all causes except the source itself. If the body is in the presence
of N sources or sinks, then the total force on the body is:

N
F= E 47rm i p qj (2)

Before Eq. (2) can be converted-into the desired form, certain symmetry properties-of
the expression for the velocity at a point i due to a source at j must be developed. The
velocity due to a source is: iILm

qr UR (3)
R2I

where m is the strength of the source, R is the distance between the source and the
point at which the velocity is desired, and UR is a unit vector in the direction from the
source to the point (See Fig. A-1i).
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S11. 3.2 (Continued)

Writing Eq. (3) in rectangular coordinates:

m. I(X1 -X~+ (Y - Y.) j+ (Z 1 -*k
1] ii (4)b~j) +X-) +Z (Y.-Y.

t II where Qji represents the velocity at I due to a source at j. Eq. (4) can be

Written in the, condensed form:

ji= Mj Kji (5)

where -Y) Z(6

.3 
x

*1 zi

Figure A-il. Velocity Due to a Source

In a similar manner, the velocity at j due to a 'source at i can be written:

Qij Kij(7)

w h e r e( X - x + ( . - .) j + ( ) k
- + - (8)

From Eq. (6) and (8), It (-,,in be seeni that the Influence coefficients and and are of the
samne niagnitude, b~ut of opp~osite signs, I. e.,

K. Ij 1  (9)
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11.3.3 Force on a Source-Sink Distribution Due to External Sources and Sinks

Fig. A-12 shows the problem to be solved. The body is represented by a source-sink
distribution, f (Q) with the x or axis through the center of the body. External to the

body are I sources and sinks. The force on the body due to the sources i ito be
calculated.

y

Z01 2 * "2
3

Figure A-12. Force on a Source-Sink Distribution Due to External

Sources and Sinks.

Eq. (1) gives the force on the body due to source i in terms of the velocity at i. The
velocity at i Is due to the other discrete sources and the body B, and can be written as:

The velocity at i due to a source of strength mjat j is, from Eq. (5),

where Ki is given by Eq. (6). The velocity at i due to the body B3 is:

wher Jf '( ) K" ( i ,zipd '(

where K(., X , Yi' Z.) represents the influence function for the velocity at
(Xi, Y1, Zi) due to an elemental source at . The total velocity due to all sources
(except i) and the body B "" therefore, from Eq. (11) and (12):

Q- =ZmjIKjh+ff( )K(,XYi l (3

J
i Putting Eq. (13) Into (1), the expression for the force on the body becomes:

- mmjKjj Zmi ff()K ( ,Xi, xi' Zi) d ([4)
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11.33 Lontiued)

Making use of Eq. (9), the first term of Eq. (14) becomes:

mZn jm (K.. + 2 mimjKj i m mj i (15)
31 ii

Since the order of summation can be changed without changing the sum,

mimj K'ij mimjKji (16)

Putting this into Eq. (15), it can be seen that the first term of Eq. (i4) is zero. This
means that the effect of the sources on each other cancels if the sources are taken
two at a time.

Eq. (14) thus becomes:

F = 47mP J i Jf ( ) K (.,Xi, Yi' Zi,) d4 (17)
I i

where K ( , Xi, Yi, Zi) is the influence function giving the velocity at i due to the
source at . For the 4 axis shown in Fig. A-12, which corresponds to the center line
of the body,

S(x- ) + Yi .z.-1*1

K( Xi, Yi, ZI) = )2  2  (18)
(Xi - 2 + yi12 + Z 1

By the argument given above, the influence function Kt for the velocity at a point
due to a source at i is given as -K, so

K Q, Xi, Yi, Zi) = -K( , Xi, Yi* Zi) (19)

Making the substitution into Eq. (17) there results:

F =- 4 7rpjf ( )[tmi K ( , Xi, Yi, Zi,)] d (20)

the velocity at due to sources at i is:

R E'nhi K ( , Xi, Yi, Zi) (21)

i
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11.3.3 (Continued)

Substituting Eq. (21) into (20) the desired expression results, i.e.,

F =-47rpf f(4 d4 (22)

Eq. (22) thus gives the force on a body due to external sources and sinks in terms of

the source-sink distribution of the body, f ( 4 ), and the resultant velocity at 4 due to

external sources and sinks, QR. Eq. (21), (19), and (18) give this velocity in terms

of the strengths and locations of the external sources and sinks.

11.3.4 References

1. Milne-Thomson, L.M. "Theoretical Hydrodynamics", MacMillan, New York, 1960.

11
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11.4 S~ROUD TIIRUST BASED ON MOMENTUM THEOREM

11.4.1 Introduction

The thrust of the shrouded propeller is derived by application of the momentum
theorem to a control volume surrounding the shroud. The velocities in the far wake
are estimated by assuming negligible propeller wake contraction. All velocities are
written in terms of their averages and perturbations from these averages. In this
way the results can be used either in a one dimensional sense when only averages
are known, or in a two-dimensional sense if the details of the distribution are known.

11.4.2 Discussion of Average Velocities and Wake Area

Before actually deriving the equation for shroud plus propeller thrust, it is necessary
to define certain average velocities. Two average velocities will be defined, one at
the propeller plane and one in the wake at infinity. At either point the average velocity
is defined as that velocity, which when multiplied by the available flow area, results
in actual mass flow passing through that area. In order to obtain this average, it is
necessary to know the axial velocity distribution at the plane in question. The shroud-
induced contribution to this velocity can be obtained from the T.A.R. theory whereas:
the propeller-induces portion Is obtained from Eq. (15) which is derives in a later para-
graph. The following model, including the effects of centerbody, is assumed in the
theory,

CIRCULATION SCALED
SHROUD CIRCULATION

DISRIUTONT.A.R. MODEL OF WAKE DISTRIBUTION

I Rb R ACTUAL WAKE SHAPE

CENTERBODY PROPELLER DISK

Figure A-13. Wake Model.

where the T. A. B. model of wake does not have any contraction. In reality, the wake
will contract somewhat and it is assumed that the distribution of circulation "inte.
wake is just a scaled version of the propeller circulation, that is

wake prop
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11.4.2 (Continued)

where r = the radius at which Fis desired:
R= the propeller radius

r = the jet radius

With the assumption of Eq. (1), the axial velocity due to the propeller wake at infinity
is given as (See Eq.(15)in paragraph 11.4.4)

r

Vjp ( r = _"J__ (2)

)rJ 2 r V20

while the propeller wake axial induced velocity at the propeller plane is given as

r

V r 1 N _ F(3)

w th p 27rV 2 j
where the parenthesis indicate functional variation with respect to the indicated variable.
laving defined tile axial velocity due to the propeller wake at the propeller and in tile

wake at infinity, the expressions for average velocity will be obtained next. Consider
first the average at the propeller plane. At this point, the axial velocity has four com-
ponents, i.e., Va=V +vs+vjp+vcb

where Vo = free stream velocity
vs = veloc itN due to shroud - T.A. R. Theory
Vjp = velocity due to propeller wake - Eq. (3)

vcb, = velocity due to centerbody - T.A.R. Theory

The average velocity at the propeller plane is, by definition,

o2 ( v s  + vjp + Vcb d(_j-
V7 0 1 + V-0 V- V-'0i-

Rb l

Now define, R

V 1 V.
ip 2 vs  Vjp + R

(1 Rcb
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11.4.2 (Continued)

so in terms of Vip (the average induced velocity at the propeller plane) Vo/V"
becomes

Vo  Vip (4)

VW V.
Again applying the definition of the average velocity to the wake at infinity, where since
there is no centerbody, the integration is taken from r=o to r = rj, there results

12 2 f Vjp r
V 7rrj = 27rr 2  o (1 + ) rj d(..)

since in the wake at infinity, the velocities due to the shroud and center-body are zero.
Now, defining the wake average induced velocity as follows,

V2 V r d ( )(5)
.0 2 j V.0 rj rj

there results

Vv.
-'- =1 + P(6)

Thus Eq. (4) and (6) define the average velocities at the propeller and in the jet at
infinity.

Having these average velocities defined, it is now possible to compute the slipstream

area at infinity by applying continuity as follows

Vo APROP = Vj AWAKE

or

V0  R2  V0 R

Solving for rj/R, the equation for slipstream contraction becomesiIi
R__ 11 R 2 bV.. -51 __ ._ v (7)
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11.4.2 (Continued)

It is now possible to obtain the total thrust of the shroud and propeller combination

by application of the momentum theorem and the wake radius defined above.

11.4.3 Derivation of Equation for Shroud and Propeller Thrust

The derivation is limited to the case of an actuato disk. Fig. A-14 shows the coordi-

nate system and the control volume which were used in the analysis.

Ar Poo, Vco

Figure~~ ~ A-14 ShodCoto0Vlm

Voo-

0 0 T -j WAKE P
r3

RR

The momentum equation can be stated as follows for the x direction,

SUM FORCES ON CONTROL VOLUME =MOMENTUM OUT - MOMENTUM IN

The control volume is taken so that all flow properties are unilorm along its surfaces
with the exception of the flow in the wake. With the control volume defined s such
the momentum out can be written as, r

rr

MOMENTUM OUT v2rp2d V,(8

where Wfl is the weight flow that passes through the cylindrical part of the control
volume. The momentum in ca be written simply as It

MOMENTUM OUT= PV 2 A3  (9)

01
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The forces on the control volume arise from two sources, pressure forces on the
control volume surface and the total thrust of the device. For the control volume
configuration stipulated, the pressure forces in the X direction cancel out since at
distances far downstream the wake pressure can be assumed constant and equal to
i.e-free-stream static. Thus the momentum equation for total thrust becomes upon

substitution of Eq. (8) and (9).
frj

Ttot = 2 7rrp VJ (Vj - Voo ) dr (10)
0

This equation is the desired result and relates total thrust to the jet velocity in the
wake Vj. The relationship between this jet velocity and the propeller circulation
distribution is considered next.

11.4.4 Relation Between Jet Velocity and Propeller Circulation

Within the framework of the T.A.R. theory for the zeroth harmonic the shroud is
represented by a cylindrical distribution of vorticity whose length is equal to the
shroud chord. The propeller is represented by a disk at the propeller plane and a
semi-infinite constant radius cylinder of vorticity represents the propeller wake. At
the downstream surface of the control volume the effect of shroud vorticity on jet
velocity is negligible due to the fact that the velocity induced by a vortex element at a

point is inversely related to distance between the point and the element. Therefore,
the velocity in the far wake is made up of the free stream velocity Vv and the
velocity induced by the propeller wake. The velocity induced at the propeller disk
by the propeller wake is exactly one-half of that induced by the wake far downstream.
This is because in the far jet, the propeller wake effectively extends from minus
infinity to plus infinity. If the wake is divided at the point where the velocity Is being
evaluated, It consists of a semi-infinite section extending to plus infinity and a similar
semi-infinite section extending to minus infinity. Each of these sections then con-
tributes one-half of the total wake velocity (induced by the ,iakc). If the section

which extends to plus infinity is considered alone, it appears to be exactly the same
as the wake extending from the propeller disk. Therefore, at the disk, the wake
induced velocity is one-half of the total induced velocity at plus infinity.

Due to the preceeding discussion, the wake velocity Vj can be written as:

Vi = V-0 + 2 vjp = V0 + Vjpoo (11)

where vjp is the velocity induced by the propeller wake at the propeller disk, and is
one half of the wake induced velocity at infinity Vjp , i.e.,

1Vjp - Vjp,
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11.4.4 (Continued)

The propeller induced velocity vjp can be related to the propeller circulation by
applying Stokes Theorem to the circulation around the far jet. In-the far jet the
velocity just outside the wake is Vo and all radial components of velocity are zero.
In addition, the assumption of negligible wake contraction leads to the existence of a
circulation in the far wake which is a scaled version of the propeller circulation.

Voo CURVE C'

dr Vj T rj
r JET

Figure A-15. Circulation Through the Cross Section
of a Jet.

The circulation around a path C through the cross-section of the jet (Ref. Fig. A-15).
can be written as:

Vjdl - Voo dl = V- (12)
J c

Now, Stokes Theorem permits c . d " to be written as:
ff

~V~dl= JV xV.dA
-c A

but V x V is by definition the circulation per unit area, so that is just the total circu-
lation enclosed by the curve C. With these noticng, IKq. (12) bocornes:

Vj dl - Vo dl =Ftot (13)
c

where /tot is the total circulation within C. If dl is taken to be 2 7rr/tan Oin
c

development the propeller and its wake for the radius r appears as -follows:
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dk -

PROP r
PLANE rS2

0 V C03

Figure A-16. Propeller and Wake Radius Diagram

where tan 0 = r 2 /Vo . Helmholtz's Theorem states that circulation must be con-

served, so that the circulation shed from a propeller blade per unit length is d F/dr.
For the curve c, with dl = 2 7r r/tan 0, the total circulation within c becomes,

fN (- dr where N is the total number of blades and F is the circulation distribu-

tion/blade. Eq. (13) now becomes r

(Vj - V ) 2 7rr' V = Nf d1- dr (14)
r~ r rj dr

The right hand side of Eq. (14) integrates immediately to

The circulation of the propeller tip F(rj) = 0, so that this, equation becomes in terms
of Vjp

2 7r V00
(V,, +2vp - WC0) =NF(r)

or
F. N(r)a

vjp 1 V (15)

Eq. (15) relates Vjp to propeller circulation for the case of an actuator disk with a small
amount of wake contraction.

Using the equations for the total thrust and propeller wake induced velocities, it is
now possible to continue with the derivation of a total thrust coefficient for the shroud
and propeller.

2
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11.4.5 Expression for CTtot

By defining a total thrust coefficient as follows,

Trot
OTtot 1 PV 2 i R2

Eq. (10) becomes upon substitution of Eq. (11) for Vj

ri fr[ 1 d(r (16)
CTtot R V V0 r

where vjp/V is given by Eq. (3).

Now vjp/V"can be written in terms of v-pVco as follows

Vjp-. = _ 00 + 6 p (17)

Vco VWo

where Eq. (17) is the definition of 6 /Vto Now from the definition of vjp/Voo it

follows thatol P 0

r P r 0(8

0 V-- (-) 0 ()

i.e., by applying continuity, there results,
1 - 1 1 . A

r v r Vjpjp r r d r-po d ( - r -- V2oo r+r -

ri voo r-j v rj rj - r d rj

00 0

or

fr Vjp- 1 v.0 + (6P r rf j V. d( -2? f v -0d )rj
0i

Substituting for vjp /Vadrom Eq. (5), there results

AI.

fr Vjp+. d r f r Vjpx d + rp r r

frj V, rj ri V- r VO rj rj

0 0 0
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or

J 6P rj d =O

Which is the desired result.

Substituting Eq. (17) into Eq. (16) for the thrust coefficient, and utilizing Eq. (18),
there results

1
R2  20

-,T j Vjp) 77 _. +4
Ttot = 2 2 R +/V co)ur \jV~o Vo r

0

In terms of Vj the wake induced velocity at the propeller, instead of Vjp
[ (the wake induced velocity at infinity) this equation becomes,

0 Ttot = 2 V Voo d (19)

where

Rp V0S0j r r 1

The first term on the right of Eq. (19) represents the thrust that would result from

simple one-dimensional momentum theory, whereas the second tern represents the
correction to the thrust due to the fact that there is in reality a velocity gradient.

I
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[1.5 ANALYSIS OF HIGHER HARMONICS

11. 5. 1 Introduction

Pressure traces yielding histories of pressure versus time were obtained during the
test program. These traces were used to estimate the magnitude of the higher har-
monics by subtracting the pressure history due to the rotating bound vortices repro-
senting the propeller blades. This appendix presents the derivation of the velocity
field due to the bound vortices. The use of this velocity field is discussed in para-
graph 6.2.2. of the text.

11. 5. 2 Mathematical Mcdel

The model of the shrouded propeller used in this analysis is composed of an N-bladed
propeller positioned in a right-circular cylindrical shroud of radius Rs and zero thick-
ness (Fig. A-17A). The radius of the propeller blades is Rp< Rs and the propeller plane
is perpandcular to the axis of the shroud; the axis of the propeller coincides with the
shrout axis. The plane of the propeller is located a distance Ao from the leading face
of the shroud and a distance Bo from the trailing face.

As viewed from a laboratory, or earth-fixed, inertia frame of reference, the shroud
and propeller have a transverse velocity Voo to the left; the propeller is rotating with
angular velocity PQ, clockwise as seen from the rear (Fig. A-17B). A cylindrical coor-
dinate system fixed to the propeller blades such that the x-axis coincides with the
propeller-shroud axis, with the positive x-direction to the right, is set up. The posi-
tive radial direction is out from the axis; the positive tangential direction is defined
in accordance with a right-handed screw advancing along the positive x-direction. In
this frame the fluid is seen to have a transverse velocity Voo in the positive x-direction,
and a tangential velocity Q in the positive 0 direction. The shroud is seen to have a

similar angular velocity Q, but, since the shroud is axisymmetric, the shroud may
be viewed as stationary with respect to the propeller-fixed frame (Fig. A-17C).

In the propeller-fixed frame, the plane of the propeller lies at x = 0, while the Nth
blade defines the angular 0 = 0. The leading face of the shroud lies at -Aothe trailing
face at Bo . Finally, positive circulation is defined in the right-handed sdnse; i. e., if
the thumb of the right hand is placed in the direction of the vorticity vector, the flow
circulates in the direction of the curled fingers.

11. 5. 3 Velocity Induced by a' Line of Vorticity

Consider first ti case ol a single blade, which is represented by a radial circulation
distribution hunction /(p), oriented in the propeller plane at angle Sb. It is necessary
to determine the velocity induced at a field point P (X, r, 9 ), as shown in Fig. A-18.
The velocity induced by an element of circulation Fd7 at P is given by the Biot-
Savart Law.
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Ao - o0

A. SHROUD & PROPELLER DIMENSIONS

B. EARTH - FIXED FRAME

C. PROPELLER- FIXED FRAME

Figure A-17. Definition of Coordinate System
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dst 0

x 0

Figure A-18. Definition ol' Variables in Biot-Savart Law

220



Hamilton U 11SER 4776
Standard pO Volume I

111-5.3 (Continued)

dv F ds

Jd vJ=Z(P) cosp Id'(2
dj=4 7r 1b1 2 (2

where f3 is defined in Fig. A-18. The following expressions for 115and cos 3 result by

use of the relations.

Y= r cos t = Cos 0
z rsin 8. =P sinO'

D! (X (r + 2-) (Z -s ) k 1/2
IDI= X2 + (rcosO-Pcoso)2 + (rsinO - P sino)2

2 2 1/ 3151 = [ + r + P -2 rp Cos 1/20 (3)

The derivation of cos € is much more involved and will not be shown here. In terms of

the variables (X, r , 0 , , D) it becomes,

COSA [X2 + r 2 sin 2 1/2 (4)

Finally,

lds~d (5)

Substitution of Eq. (3), (4), and (5) into Eq. (2) for the velocity yields:

k1 -- 2 - 2 j 2" (P )2 1/2 p ()d ~ 2 4 r sint (0_0

4 7r

Integration of Eq. (6) along the entire lifting line from P= 0 to P= p
yields

( Rp

!V1 iX2+r2 s2 (0-_)]1/2f r (P) d p

r +  2rp cos (0
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The axial, radial, and tangential components of this total velocity are desired so that

they may be superposed with the corresponding components from the other blades.
Note that the velocity induced by the given vortex line is perpendicular to the plane
determined by that line and the field point in question. From this observation a unit
vector in the direction of the induced velocity can be derived,

lv=Uxl +Urlr+UO 10

where

Ux rsin (0,-) 1/2 (8a)

P2 + r2 sin2 (E-)]-

U X sin ( 0 -0) 12(8b)Ix",
and

X cos( 0-€)

[ +r2 sin 2 ( 0~] (8c)

The sigms are chosen to agree with our definition of positive circulation in the right-
handed sense. 1r and 10 are unit vectors in the radial and tangential directions, re-
spectively, and are given by

1r = cos 0 sin 0 k

10 = - sin 0 i + cos 0 k

Defining Rp

_F (P) dPI (X, r, 0€

f X2+r 2 +P2 -2rPcos(0-) ] 3/2

and using the above expressions for the components of the unit vector, the velocity
components induced by one blade, of radius Rp located at an angle € become:

r sin(-)
Vx 4 47r I (X, r, 0 , 0) (9a)
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Vr - Xsin(0-q) I X, r, 0 ,€) (9b)
47r

vO= x os (0 )I (x, r, 0,) (9c)
4ir

,11. 5.4 Velocity Induced by an N-Bladed Propt_ller

By the principle of superposition, the axial components of velocity due to the separate
blades are summed to obtain the total axial velocity at the field point P (X, r, )
,A similar summation yields the radial and tangential components. The total velocity
is then the vector sum of the component velocities.

For an N-bladed propeller with the Nth blade oriented at 0 = 2 7r , the angles of the
separate blades are

1 2 7r i t,2, ..... ,N

The axial, radial, and tangential velocities-induced at P (x, r, 0 ) by the N propeller
'blades are then given as

dx N

x= I(x,r, 0, 0) sin( 0- 0i) (la)

X N
=- r I (X,r, 0 , i)sin( 0i (11b)
%r 41r

N
X

qb - 1 I(X,r, 0, Oi)cos(O -0i) (lc)
47T

The total velocity Induced by the blade-bound vorticity is

qb bx r+qb0  10 (12)

Eq. (11) and (12) give the velocity at any point in terms of the integral L Evaluation
of this integral is now considered. Recall that I is given as

I(Xr, FPdP / (13)

)7 rx2 + r +p? -2rP cos (0
0
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11.5.4 (Continued)

The circulation distibution F (P) is approximated by a series of straight lines as

follows. The radial distance from P = o to P = Rp is broken into T half-open intervals

(0, P2 ], (P2 , P3 ],...(PT,Rp]

and the approximating function FP) defined as

F* (Pj = CkP +d k for Pk< P<_Pk+l (14)

for k=! 2, ... , T

Ck and dk are evaluated from the values F( P ) ....... .(PT+I)of the blade circula-
tion at the endpoints of the intervals (See Fig. A-19). The integration of Eq. (13) subject
to the approximating function r * is considered in the next section.

11.5.5 Inte-rationofI(X,r 0 . i )

The function F * has been defined in Eq. (14). The values of Ck and dk are given
in terms of the distribution F ( P ) as

Ck =[Fr(Pk+l) - F(P)J (Pk+i - P'k) (15)

Pk+1 F(Pk) - PkF(fk+l) (16).
k= (Pk+ - JCk)

Using F * in place of P in Eq. (14), the integral I becomes

TPk+l f Pk+1 dPI(X, r, 0,¢) =  Ck P '" +  dDk g)
k D3 (17)

k=1 Ck k=
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* 11. 5.5 (Continued)

where

jI 1/2
D= 12+ r 2+p - 2rP Cos (0- Oj

Integration of Eq. (17) over P is now possible. The first sum, defined as I,, becomes

II(X, r, 0, 0 i) xX2 +r2 sin2 ( 0 -i)

(18)

X2+ r2 -  rPkcos (0-0i)
AC Ck-l) -/2
E(kCk1 X2+ r2 + P Ok - 2 r P k c o s ( 0 _- 0 i )! 1/2'

k=2

The second sum 12 is

S1x
12 (X, r, 0, x2+ = X r sin (0,- ei

T+I Pk- rcos (0 -0i)

E (dk-1 - dk) '+ r Z+ Pkz' - 2 rPk cos (0- Oi) 1/2'

k-2

The value of I is thus given as:

I it .I 12

226

II.



HSER 4776
amilton ,~, .... .. Volume IStandard A: &

11.5.5 (Continued)

Where 11 and 12 are known from Eq. (18) and (19) in terms of the coefficients Ck and
dk, defined by Eq. (15) and (16). The velocity at any point (X, r, 0), is then given

by Eq. (11) and (12) in terms of I as defined above.

11.5.6 List of Symbols

Ck - slope of r*(P) in the k th interval

D - vector from vortex element to field point

dk - y -intercept of r *(p) in the k th interval

ds - vector differential of distance along vortex element

N - number of blades

qb - total velocity induced by all N blades at field point (X, r, 0 )

qbx, qbr, qb0 - axial, radial, and tangential components of %

RP - radius of propeller

Rs - radius of shroud

T - number of intervals used to express r*(P

Ux, Ur, U0 - axial, radial, and tangential components of tv

V - total velocity induced by one blade at a given field point (X, r, 0)

Vx, Vr, V0  - axial, radial, and tangential components of V

VO - transverse velocity of propeller and shroud

(X, r, 0 ) - cylindrical coordinates of field point

(X, y, z) - Cartesian coordinates of field point

- defined in Figure A-18

I- (p) - circulation at P

jr*(P) - linearized function for r(P)

,1 227
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11.5.6 (Continued)

P1" PT + 1 -endpoints of the T intervals

Oi - angular orientation of I th propeller blade

( , P, 7) - cylindrical coordinates of vortex element

(,77e) - Cartesian coordinates of vortex element

pv - angular velocity of propeller

Iv  - unit vector in direction of V
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1 6 DISCUSSION OF VELOCITY CALCULATION IN PROPELLER PLANE

i- .6.1 Introduction

The axial velocity in the propeller plane utilized in the propeller velocity diagrams is
made up of contributions from the propeller wake, the centerbody and the shroud thick-
ness and vorticity distributions. The propeller wake contribution is obtained from the
Hamilton Standard propeller design method. The centerbody contribution is obtained
by numerical integration of the equation for axial velocity derived "n Appendix 11. 1 and
ig calculated by use of Hamilton Standard Deck H060. The axial vc locities due to shroud
vorticity and thickness are computed in Hamilton Standard Deck H194. This calculation
utilizes the characteristic functions VELC (NU) and VELH (NU) which are derived below.

11.6.2 Derivation of VELC (NU). - Shroud Vorticity Characteristic Function

The velocity due to the shroud vorticity distribution is given by the Blot-Savart Law as

[ -3/2 A A' A

=1 r ~ Q 1+R '4qa (rp) 2 (Xv) 2 r - -12 + 22

where

R = shroud radius

! r= propeller radius at which q is desired

'I
2

2' xp -x:v
A2  1 1/r p  1+ .I + - -2

R It

X = propeller location

xv =variable of integration

qa axial velocity

X p =xp/1

Xv =Xv/1

rp rp/R
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11.6.2 (Continued)

J (Xv) = shroud vorticity distribution
I d Q/()

Q 1 /2 (V) d

Q- 11 2 (V) - (Q-1/ 2 V))

The term in square brackets represents the influence function for the velocity at (xp,
rp) due to a vortex ring at xv of unit strength. The vorticity distribution (xV) is known
from the T.A.R. solution in terms of the three dimensional Glauert coefficients, I.e.
see paragraph 6.1.2 of text, and is

_____ boo cot O v +,b. sin v v  (2)

Vo  2 V 2

whereov is defined by

XV = -Acos 0 v (3)

Substituting Eq. (2) into Eq. (1) and making the transformation Eq. (3) there results,

SV R 3/2 +cosv) x

q a = 4 7 R - - -r p I

0

PXRd Ov + Xbov fPARsin v0vSinovd0v (4)
V 0

where

2 2
A A

The integrals in Eq. (4) can be evaluated since the integrands are known functions of
0 v. These integrals are evaluated numerically in the program and represent the
VELC (NU) or shroud vorticity characteristic functions,

2

I
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I1, 6; 2 tContinued)

Defining

Ir

Wo f (+cos qv) d4V v

0

and

y= f sin .v sin 0v-i v dkv

'the axial velocity becomes

3/2

VO 7 I-T IY=1 o

11. 6.3 Derivation of VELH (NU) - Shroud Thickness Characteristic Functions

The velocity due to the shroud source-sink distribution is given by Eq. (5)

Vx = f (X) Q 1/2(1+) dxo (5)

where
A2- (X- - x)2 +- +i1- 2rp]

f (xo) shroud source sink distribution

xo  - variable of integration

The remaining variables have already been (lefined and the quantity in brackets repre-
sents the influence function for the axial velocity at (Xp, r due to a unit source ring

at x o .

j 231
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11.6.3 (Continued)

The source-sink distribution f (xo) is represented by a polynomial of the form

- n-if (x,) =~ ko + An (X)(6)
"V° '"o n

Substitution of Eq. (6) into Eq. (5) results in the following expression for the axial
velocity due to shroud thickness,

O_ VX 1/23/ dAof + A)Q / 2 d

The integrals in the above equations can be evaluated since the integrands are known
functions of x0. Defining the following characteristic functions due to shroud vorticity
(VELH(NU)),

ho Q'-1 /2 dxo

hv (p /,,-

h V f ('p- X,) i i Q'-1/2 dxo

the axial velocity due to the shroud source-sink distribution becomes

Vx 3/2 Aoh° + Avhv]

21r|) K'
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11.7 CHI INTEGRALS

11. 7. 1 Introduction

The radial velocity at the shroud reference cylinder due to the propeller wake is

given by Eq. (20) in the textin terms of the derivative of the propeller circulation

distribution. In Ref. 1 of. this Appendix this derivative Is evaluated by expanding the

propeller circulation into a Fourier series over the propeller radius. The details of

the derivation are shown on pages 48 and 49 of Ref. 1. A brief description is given

below.

11.7.2 Discussion

Theexpression for the radial wash in terms of the Fourier coefficients of the series

expansions for circulation becomes,

V)r 1 r m#1/ 2  00 jr1 x Xp,bL) (1)

o prop 2 2lrJ J=
wake

where

N = number of blades

/ = tip clearance = Rp/R

J = advance ratio

=fA**I/2 COjA A
X, = r Q/ 2 (4)3) cos jirrvdrv

0 2 A 2
=v _;Arv)

A

R = shroud radius

R p = propeller radius

rv = variable of integration (propeller radial variation)
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11.7.2 (Continued)

The Fr' s and Im are best defined by noting the Fourier expansion for F i. e.,

F•FmA
M j=1l i r ~

j where F F/RpV

and where Fm is the maximum value of F

The characteristic functions X j have been integrated and tabulated in Ref. 1 and are
therefore known as functions of AXp and p .

The 'contribution of the propeller radial velocity to the two-dimensional Glauert

coefficients is given by the following equations (See paragraph 6. 1. 2 of text.).

7T

boo/, = J 7rVr ds (2)00 1 7r 0 70-)rop
0 wake

2- 8 Vr
bo, - cos s dos (3)

0 prop

o wake

Substitution of Eq. (1) Into Eq. (2) and (3) after making the substitutions

Xp= -Xcosop

Xs -- cosos
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11.7. 2 (Continued)

results in

2 1/2 "
-("I . d) (4)

0 p'- 2 "2 f

' j 0

and

b 2-D _ 2 N Fmj 1/ fj l(q s ) cosv4 s dos (5)

j 0

The integrals in Eq. (4) and (5) are referred to as the "CHI" integrals in the program
and are defined as follows:

ci, (f o)- 1 [ i ds = Cjo

CIII (j V) =xj COsir s dO s = CjV

fIn terms of these integrals, the two-dimensional Glauert coefficients become:

2-D 2 Nrm 1/22
b~v'-v j C pY= 0, 1, 2, ......

i72  J
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